
Ways of Presenting Algorithms
(Algorithms Part II)

ver. 14 z drobnymi modyfikacjami!

Wojciech Myszka

2023-11-21 07:29:41 +0100

Expressing/Presenting algorithms

1. Natural language. Use simple sentences in the imperative mood.

2. Flowcharts. In a moment. . .
3. Decision tables. A little bit later. . .
4. Pseudocode — formal type of writing, similar to. . .
5. Programing languages. Never. . . ?! (But remember about Blockly. . .)

Expressing/Presenting algorithms

1. Natural language. Use simple sentences in the imperative mood.
2. Flowcharts. In a moment. . .

3. Decision tables. A little bit later. . .
4. Pseudocode — formal type of writing, similar to. . .
5. Programing languages. Never. . . ?! (But remember about Blockly. . .)

Expressing/Presenting algorithms

1. Natural language. Use simple sentences in the imperative mood.
2. Flowcharts. In a moment. . .
3. Decision tables. A little bit later. . .

4. Pseudocode — formal type of writing, similar to. . .
5. Programing languages. Never. . . ?! (But remember about Blockly. . .)

Expressing/Presenting algorithms

1. Natural language. Use simple sentences in the imperative mood.
2. Flowcharts. In a moment. . .
3. Decision tables. A little bit later. . .
4. Pseudocode — formal type of writing, similar to. . .

5. Programing languages. Never. . . ?! (But remember about Blockly. . .)

Expressing/Presenting algorithms

1. Natural language. Use simple sentences in the imperative mood.
2. Flowcharts. In a moment. . .
3. Decision tables. A little bit later. . .
4. Pseudocode — formal type of writing, similar to. . .
5. Programing languages. Never. . . ?! (But remember about Blockly. . .)

Algorithm

Algorithm
a step-by-step procedure for solving a problem or accomplishing some end

Expressing algorithms
Flowchart

Flowchart
(also block diagram) A flowchart is a type of diagram that represents an
algorithm or process, showing the steps as boxes of various kinds, and their order
by connecting these with arrows. This diagrammatic representation can give a
step-by-step solution to a given problem. Process operations are represented in
these boxes, and arrows connecting them represent the flow of control.

Block diagram reveals important steps in the algorithm and the logical
relationships between them.

Introduced in the early twenties of the XX century. Used, among others, by von
Neumann.

Symbols used in the flowcharts
Common shapes

Data
Symbol

Decision
Symbol

Disk
Symbol

Display
Symbol

Document
Symbol

Extract
Symbol

Manual Input
Symbol

Manual Operation
Symbol

Merge
Symbol

Multi Document
Symbol

Predefined Process
Symbol

Preparation
Symbol

Process
Symbol

Terminator
Symbol

Flowchart template

Flowchart
Terminator Symbol

Terminator symbol signals the
start or end of a process. It usually
contains the word “Start”, “Begin”
or “Stop”, “End”.

Terminator
Symbol

Flowchart
Data symbol

Data Symbol (also
Input/Output) The Data flowchart
shape indicates inputs to and
outputs from a process. As such,
the shape is more often referred to
as an I/O shape than a Data
shape. READ z, WRITE z+10.

Data
Symbol

Flowchart
Process

Process Symbol Generic
processing step. Examples: “Add 1
to z” or “z = z + 1”; “replace
identified part”; “save changes” or
similar.

Process
Symbol

Flowchart
Predefined process

Predefined process
(Subroutine) is used to show
complex processing steps which
may be detailed in a separate
flowchart.

Predefined Process
Symbol

Flowchart
Decision Symbol

Decision Symbol shows where a
decision is necessary, commonly a
Yes/No question or True/False
test. For example: Check if a is
equal to b, if YES do something
if NO do something else.

Decision
Symbol

Flowchart
Connector

Connector If you need to connect
to another page or another section
of the chart, and can’t draw a line,
you can use a circle. You draw the
line to the circle and label the
circle with a letter or other
symbol: 4.3, 2, B2.

Symb

Selecting the highest person in the room
Natural language

1. Select any person from the audience, think of it as the highest (and place it
near the door).

2. Are there any people left in the room? if so — go to step 5.
3. If not — the highest person is one standing near the door.
4. End of the algorithm

5. Take another person from the room.
6. Compare it with one standing near the door — is it higher?
7. If not go to step 2
8. If so — replace the person standing near the door, go to step 2

Selecting the highest person in the room
Natural language

1. Select any person from the audience, think of it as the highest (and place it
near the door).

2. Are there any people left in the room? if so — go to step 5.

3. If not — the highest person is one standing near the door.
4. End of the algorithm

5. Take another person from the room.
6. Compare it with one standing near the door — is it higher?
7. If not go to step 2
8. If so — replace the person standing near the door, go to step 2

Selecting the highest person in the room
Natural language

1. Select any person from the audience, think of it as the highest (and place it
near the door).

2. Are there any people left in the room? if so — go to step 5.
3. If not — the highest person is one standing near the door.

4. End of the algorithm

5. Take another person from the room.
6. Compare it with one standing near the door — is it higher?
7. If not go to step 2
8. If so — replace the person standing near the door, go to step 2

Selecting the highest person in the room
Natural language

1. Select any person from the audience, think of it as the highest (and place it
near the door).

2. Are there any people left in the room? if so — go to step 5.
3. If not — the highest person is one standing near the door.
4. End of the algorithm

5. Take another person from the room.
6. Compare it with one standing near the door — is it higher?
7. If not go to step 2
8. If so — replace the person standing near the door, go to step 2

Selecting the highest person in the room
Natural language

1. Select any person from the audience, think of it as the highest (and place it
near the door).

2. Are there any people left in the room? if so — go to step 5.
3. If not — the highest person is one standing near the door.
4. End of the algorithm

5. Take another person from the room.

6. Compare it with one standing near the door — is it higher?
7. If not go to step 2
8. If so — replace the person standing near the door, go to step 2

Selecting the highest person in the room
Natural language

1. Select any person from the audience, think of it as the highest (and place it
near the door).

2. Are there any people left in the room? if so — go to step 5.
3. If not — the highest person is one standing near the door.
4. End of the algorithm

5. Take another person from the room.
6. Compare it with one standing near the door — is it higher?

7. If not go to step 2
8. If so — replace the person standing near the door, go to step 2

Selecting the highest person in the room
Natural language

1. Select any person from the audience, think of it as the highest (and place it
near the door).

2. Are there any people left in the room? if so — go to step 5.
3. If not — the highest person is one standing near the door.
4. End of the algorithm

5. Take another person from the room.
6. Compare it with one standing near the door — is it higher?
7. If not go to step 2

8. If so — replace the person standing near the door, go to step 2

Selecting the highest person in the room
Natural language

1. Select any person from the audience, think of it as the highest (and place it
near the door).

2. Are there any people left in the room? if so — go to step 5.
3. If not — the highest person is one standing near the door.
4. End of the algorithm

5. Take another person from the room.
6. Compare it with one standing near the door — is it higher?
7. If not go to step 2
8. If so — replace the person standing near the door, go to step 2

Selecting the highest person in the room
Flowchart

Start

Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace

No

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace

No

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace

Yes

No

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace

Yes

No

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace

Yes

No

No

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace
Yes

No

No

Yes

Selecting the highest person in the room
Flowchart

Start
Select any
person

Is anybody
left?

Take
the next

Is it
higher?

The highest
person is

one standing
near the door

Stop

Replace
Yes

No

No

Yes

Salary

Start
note 0;
Point to
first salary

add salary
pointed
to noted
number

at end of
list

point to
next salary

output
noted
number

Stop

no

yes

1. make a note of the
number 0;

2. proceed through the list,
adding each employee’s
salary to the noted
number;

3. having reached the end
of the list, produce the
noted number as output.

Euclidean Algorithm
Natural Language

1. [Find the reminder] Divide m by n let r be the reminder. (We have
0 ≤ r < n.)

2. [Is zero?] If r = 0 finish the procedure; the answer is n.
3. [Simplifying] Let m← n, n← r and came back to the step 1.

Euclidean Algorithm
Flowchart

Start

Find the
reminder Is zero?

Stop

Simplifying
not

yes

Decision table

▶ An alternative to the flowchart.
▶ Tables are a quick and easy way for humans to read, understand and execute

a complex procedure.
▶ Work best with complex decision problems.
▶ It is not suitable to describe computational problems.
▶ Today it is a little forgotten.

Decision table cont.

The idea comes from the ’50s (20th century!)

Structure of DT
Conditions Condition alternatives
Actions Action entries

▶ Each decision corresponds to a variable whose possible values are listed
among the condition alternatives.

▶ Each action is a procedure or operation to perform, and the entries specify
whether (or in what order) the action is to be performed for the set of
condition alternatives the entry corresponds to.

Example

Rules

C
on

di
ti
on

s Printer does not print Y Y Y Y N N N N
A red light is flashing Y Y N N Y Y N N
Printer is unrecognized Y N Y N Y N Y N

A
ct

io
ns

Check the power cable X
Check the printer-computer cable X X
Ensure printer software is installed X X X X
Check/replace ink X X X X
Check for paper jam X X

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign

Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign

Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign

Bargain the extras; Buy if
the price of the extras is
reasonable

Buing a car
an excessive price price OK underestimated price

The car meets all require-
ments

Bargain; if you do not suc-
ceed come back the next
day and bargain again;
buy even if you can not re-
duce the price

Bargain; Buy It whatever
the result of negotiations

Buy

The car does not meet all
the requirements but the
condition and equipment
are acceptable

Resign Bargain; Buy if the price is
reduced

Bargain; Buy regardless of
the results the negotia-
tions

The car does not meet the
requirements

Resign Resign Bargain the extras; Buy if
the price of the extras is
reasonable

Dressing a coat

R1 R2 R3
C1 Raining Y Y N
C2 Cold Y N Y
A1 Dress warm raincoat X
A2 Dress raincoat X
A3 Dress warm coat X

Dressing the coat cont.

In the table we have omitted the condition:
Raining N
Cold N
it does not require any special action, although it could be added by defining the
action: ’Do not wear any coat”.

Internet shop (B2B)

Another example is the decision table describing the activities related to the
adoption and execution of the contract.

The table includes also the shop policy that can be described as follows:
1. The company serves registered customers only.
2. The company supplies goods from the list of goods only.

Internet schop cont.

C1 Item on the list? Y N — Y
C2 Customer registered? Y — N Y
C3 Sufficient supply of goods? Y — — N
A1 Book the item X
A2 Log the transaction X
A3 Save the item for the list to realize X
A4 Deliver the item X
A5 Reject the transaction X X

“—” means Do not care

Programming Languages
Flowchart

Start

Find the
reminder Is zero?

Stop

Simplifying
not

yes

Programming languages
Blockly

Programming languages
Java Script

va r m, n , r ;
m = pa r s e F l o a t (window . prompt (’ i n pu t m’)) ;
n = pa r s e F l o a t (window . prompt (’ i n pu t n ’)) ;
r = m % n ;
wh i l e (r != 0) {
m = n ;
n = r ;
r = m % n ;

}
window . a l e r t (n) ;

Programming languages
Python

m = None
n = None
r = None
m = f l oa t (text_prompt (’ i n pu t ␣m’))
n = f l oa t (text_prompt (’ i n pu t ␣n ’))
r = m % n
while r != 0 :

m = n
n = r
r = m % n

pr int (n)

Programming languages
PHP

$m;
$n ;
$ r ;
$m = f l oa tva l (readl ine (’ i n pu t ␣m’)) ;
$n = f l oa tva l (readl ine (’ i n pu t ␣n ’)) ;
$ r = $m % $n ;
while ($ r != 0) {

$m = $n ;
$n = $r ;
$ r = $m % $n ;

}
pr int ($n) ;

Programming languages
Lua

m = tonumber (text_prompt (’ i n pu t m’) , 10)
n = tonumber (text_prompt (’ i n pu t n ’) , 10)
r = m % n
wh i l e r ~= 0 do
m = n
n = r
r = m % n

end
p r i n t (n)

Programming languages
Dart

va r m, n , r ;
main () {

m = Math . pa r s eDoub l e (Html . window . prompt (’ i n pu t m’ , ’ ’)) ;
n = Math . pa r s eDoub l e (Html . window . prompt (’ i n pu t n ’ , ’ ’)) ;
r = m % n ;
wh i l e (r != 0) {
m = n ;
n = r ;
r = m % n ;

}
p r i n t (n) ;

}

Control structure

▶ An algorithm can be thought of as being executed by a little robot, or a
processor). The processor receives orders to run around doing this and that,
where the “this and that” are the basic actions of the algorithm.

▶ It should be quite obvious that the order in which the basic actions are
carried out is crucial.

▶ Creating an algorithm we will use the sequence of commands. We assume
that after one command will be executed the next.

▶ Sometimes we will like to change the execution order of commands using
conditionals if something (happens) do this else do that

Direct sequencing

Direct sequencing
of the form “do A followed by B,” or “do A and then B.” (Every semicolon or
period in the recipe hides an implicit “and then” phrase, for example, “gently fold
in chocolate; [and then] reheat slightly . . .”)

Direct sequencing

Direct sequencing
of the form “do A followed by B,” or “do A and then B.” (Every semicolon or
period in the recipe hides an implicit “and then” phrase, for example, “gently fold
in chocolate; [and then] reheat slightly . . .”)

Conditional branching

Conditional branching
of the form “if Q then do A otherwise do B,” or just “if Q then do A,” where Q is
some condition. (For example, in the recipe “reheat slightly to melt chocolate, if
necessary,” or “serve with whipped cream, if desired.”)

Conditional branching

Conditional branching
of the form “if Q then do A otherwise do B,” or just “if Q then do A,” where Q is
some condition. (For example, in the recipe “reheat slightly to melt chocolate, if
necessary,” or “serve with whipped cream, if desired.”)

Iterations I

Sequencing and branching, do not explain how an algorithm of fixed—maybe
even short—length can describe processes that can grow increasingly long,
depending on the particular input.

Bounded iteration
of the general form “do A exactly N times,” where N is a number.

Conditional iteration
sometimes called unbounded iteration, of the form “repeat A until Q,” or “while
Q do A,” where Q is a condition. (For example, in the recipe “beat egg whites
until foamy.”)

Iterations can be nested!

Bounded iteration
Factorial

Iteration cont.
Nested iterations

Iteration cont.
Nested iterations

GoTo Instruction

GoTo
Instruction has the general form “goto G,” where G marks some point in the text
of the algorithm.

Many researchers are opposed to using “goto”s freely in algorithms.

Subroutines

Subroutines

Subroutines I
1. We are given a lengthy text and we are interested in finding out how

avaricious its author is by counting the number of sentences that contain the
word “money.”

2. We are not interested in the number of times the word “money” occurs, but
in the number of sentences in which it occurs.

3. An algorithm can be designed to run through the text looking for “money.”
4. Upon finding such an occurrence, it proceeds to run ahead looking for the

end of a sentence, which for our purposes is assumed to be a period followed
by a space; that is, the “. ”

5. When the end of a sentence is found, the algorithm adds 1 to a counter
which was initialized to 0 at the start.

6. Algorithm then resumes its search for “money” from the beginning of the
next sentence.

Subroutines

Subroutines

Subroutines

Subroutine

Subroutine
(also termed procedure, function, routine, method, or subprogram), is a part of
source code (algorithm) within a larger computer program that performs a
specific task and is relatively independent of the remaining code (algorithm).

Variables I

▶ A variable is not a number, a word, or some other item of data. Rather, it
can be treated as a small box, or cell, or place, in which a single item can be
kept.

▶ Algorithms utilize variables (with different names) for different purposes, bat
generally for storing some values. They are kind of a storage or a memory.

▶ New value putted into the variable erases its previous content.
▶ Taking a value from the variable does not change its content.
▶ Each variable can contain only one value at a time.
▶ Notation similar to mathematical is used to describe operations on variables:

X = 5, X := X + 1, or X ← A + B

Vector, array I

▶ Let us think about our employee list. It may be viewed simply as a multitude
of data elements, which we might decide to keep, or store, in a multitude of
variables, say X ,Y ,Z , . . .

▶ Storing all salaries that way is not very suitable for the mentioned algorithm:
each element in the list would have to be referred to in the algorithm by a
unique name.

▶ We need lists of variables that can be “run through,” or accessed in some
other way, but without the need to name each of their elements explicitly.

▶ In mathematics, such elements are called “vectors”, or one-dimensional
arrays.

▶ The name is assigned to all structures (containing all data).

Vector, array II

▶ We can access each structure element, for example, by its position on the
list, we note this: V (I) means the content of the I -th element of the vector
V . The alternative notation looks like this: V [J]. I , J, are so-called pointers
or indexes

Here each cells represents one elementary variable.
V (1) V (2) V (3) V (4) V (5)

In mathematical notation:
V1 V2 V3 V4 V5

Simple algorithm using vectors

1. do the following N − 1 times:
1.1 X ← 1;
1.2 while X < N do the following:

1.2.1 if V [X + 1] < V [X] then exchange them;
1.2.2 X ← X + 1.

There are also special “indexed” versions of iterative control constructs, tailored
towards vector traversal. For example, we can write:
for X going from 1 to 100 do the following
which is similar to:
do the following 100 times

Simple algorithm using vectors

1. do the following N − 1 times:
1.1 X ← 1;
1.2 while X < N do the following:

1.2.1 if V [X + 1] < V [X] then exchange them;
1.2.2 X ← X + 1.

There are also special “indexed” versions of iterative control constructs, tailored
towards vector traversal. For example, we can write:
for X going from 1 to 100 do the following
which is similar to:
do the following 100 times

Array (multidimensional) I

▶ In many cases, it is convenient to arrange the data, not in a simple,
one-dimensional list, but in a table.

▶ The corresponding algorithmic data structure is called a matrix, or a
two-dimensional array, or simply an array for short.

▶ The standard second-grade multiplication table is a 10 by 10 array in which
the data item at each point is the product of the row and column indices;

▶ Referring to an array element is typically achieved using two indices, row and
column. We write A[5, 3] for the element located in row 5 and column 3.
Sometimes such referring will be noted: A(5, 3) or A[5][3].

Array (multidimensional) II

▶ Running through the entire array can be achieved by an outer loop running
through all rows and an inner one running through all of a particular row
elements, or vice versa.

Mathematical notation:

v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3

v4,1 v4,2 v4,3

Algorithmic notation:

V (1, 1) V (1, 2) V (1, 3)
V (2, 1) V (2, 2) V (2, 3)
V (3, 1) V (3, 2) V (3, 3)
V (4, 1) V (4, 2) V (4, 3)

Control structures for arrays

Queue
▶ An interesting variation on the vector/array.
▶ Sometimes a list is used just to model a queue, in which case all the

algorithm needs in way of interaction with the list are the ability to add
elements to its “back” and remove them from its “front.”

▶ The structure is called FIFO (First In First Out)

Stack
▶ A structure similar to a vector (list)
▶ Adding elements to “front”
▶ Remove also from “front”.

Tree or hierarchy
One of the most important and prominent data structures in existence is the tree.
▶ Structure with the order.
▶ There is a special object that is the “beginning” of the whole structure: root.
▶ Other elements are called descendants or offspring.
▶ Each object can have a number of equivalent descendants.
▶ Each offspring is called a node.
▶ Nodes at the “end” of the tree, having no offspring are leaves.
▶ Branch sequences of nodes corresponding to downward traversals in the

direction from the root to a leaf.

Tree

root

left right

child

a b

child

Other data structures

▶ lists (some similarity to vectors or arrays).
▶ databases (some similarity to arrays).
▶ graphs (some resemblance to trees).

Part I

Excursus

Selecting the highest person
(in the room)

1. Height of all people are saved in an array called H. (This should be height,
but it takes up too much space.)

2. Variable N contains the number of persons in the room (the length of
array H).

3. Variable MAX contains the maximum value from array H (when the
algorithm ends) i.e. height of the highest person in the room.

4. I — auxiliary variable.

Maximum value in an array

Start

MAX
= H[1]
I = 1

I < N? I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N? I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N?

I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N?

I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

not

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N?

I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

not

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N? I= I + 1

H[I] >
MAX

Output
MAX

End

MAX =
H[I]

yes

not

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N? I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

yes

not

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N? I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

yes

not

no

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N? I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

yes

not

no

yes

Maximum value in an array

Start
MAX
= H[1]
I = 1

I < N? I= I + 1 H[I] >
MAX

Output
MAX

End

MAX =
H[I]

yes

not

no

yes

Simple problem

1. While X ̸= 1, do X ← X − 2.
2. Stop

When X = 7 we will got X equal to:
7, 5, 3, 1
. . .

When X = 8 algorithm generates:
8, 6, 4, 2, 0, -2, -4, -6, -8,. . .
and never stops

This works for odd positive values and does not work for even values.

Simple problem

1. While X ̸= 1, do X ← X − 2.
2. Stop

When X = 7 we will got X equal to:
7, 5, 3, 1
. . .

When X = 8 algorithm generates:
8, 6, 4, 2, 0, -2, -4, -6, -8,. . .
and never stops

This works for odd positive values and does not work for even values.

Simple problem

1. While X ̸= 1, do X ← X − 2.
2. Stop

When X = 7 we will got X equal to:
7, 5, 3, 1
. . .

When X = 8 algorithm generates:
8, 6, 4, 2, 0, -2, -4, -6, -8,. . .
and never stops

This works for odd positive values and does not work for even values.

Simple problem

1. While X ̸= 1, do X ← X − 2.
2. Stop

When X = 7 we will got X equal to:
7, 5, 3, 1
. . .

When X = 8 algorithm generates:
8, 6, 4, 2, 0, -2, -4, -6, -8,. . .
and never stops

This works for odd positive values and does not work for even values.

A little bit more complicated problem. . .

1. While X ̸= 1, do:
1.1 If X is even put X ← X/2.
1.2 otherwise put X ← 3X + 1

2. Stop

Let’s start from 7: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
And what with other values?

A little bit more complicated problem. . .

1. While X ̸= 1, do:
1.1 If X is even put X ← X/2.
1.2 otherwise put X ← 3X + 1

2. Stop
Let’s start from 7: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

And what with other values?

A little bit more complicated problem. . .

1. While X ̸= 1, do:
1.1 If X is even put X ← X/2.
1.2 otherwise put X ← 3X + 1

2. Stop
Let’s start from 7: 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
And what with other values?

A little bit more complicated problem. . . I
Collatz conjecture

1. While X ̸= 1, do:
1.1 If X is even put X ← X/2.
1.2 otherwise put X ← 3X + 1

2. Stop

A little bit more complicated problem. . . II
Collatz conjecture

It turns out that the above algorithm either completes relatively quickly or it
generates a very long (an infinite?) chaotic sequence of numbers.

No one was able to prove that sequence generated by the algorithm begin to
repeat (which means the algorithm will not stop never) or prove that for some
particular initial value X the algorithm will stop.

A little bit more complicated problem. . . III
Collatz conjecture

The Collatz conjecture is: This process will eventually reach the number 1,
regardless of which positive integer is chosen initially.

	Expressing algorithms
	Symbols used in the flowcharts

	Selecting the highest person in the room
	Euclidean Algorithm cont.
	Decision table
	Programming languages
	Control structures
	Direct sequencing, conditional branching
	Iterations
	GoTo Instruction
	Subroutines

	Data
	Variables
	Vector
	Array
	Queue (line)
	Stack
	Tree
	Other

	Excursus
	Selecting the highest person in the room (once again)
	Simple problem

