Fracture mechanics of metallic biomaterials

Wolfgang Dietzel*

Trzebnica, 3-6 th September 2013

13th Summer School on Fracture Mechanics

Fracture Mechanics of Metallic Biomaterials

Wolfgang Dietzel

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

*Helmholtz Zentrum Geesthacht, Zentrum für Material- und Küstenforschung

Metallic Biomaterials

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

2

Outline:

- Metallic Biomaterials
- Titanium Alloys
 - FM testing of Ti alloys
- Magnesium Alloys
 - FM testing of Mg alloys
 - Modelling the degadation of Mg stents
- Modelling the fatigue life of Co-Cr stents
- "Real Life" (Conclusions)

13th Summer School on Fracture Mechanics Wroclaw, 3 - 6 September 2013 Wolfgang Dietzel, HZG

Metallic implant materials (bone replacement)

What will it be used for ?

J. Rychly, Rostock

Wolfgang Dietzel, HZG

3

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Permanent

13th Summer School on Fracture Mechanics

What will it be used for ?

Wroclaw, 3 – 6 September 2013

Wolfgang Dietzel, HZG

5

Materials & Properties

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

Properties	Natural bone	Magnesium	Ti alloy
Density (g/cm ³)	1.8–2.1	1.74–2.0	4.4-4.5
Elastic modulus (Gpa)	3–20	41–45	110-117
Compressive yield strength (Mpa)	130–180	65–100	758-1117
Fracture toughness (MPam ^{1/2})	3–6	15–40	55-115
Properties	Co–Cr alloy	Stainless steel	hydroxyapatite
Density (g/cm ³)	8.3–9.2	7.9–8.1	3.1
Elastic modulus (Gpa)	230	189–205	73–117
Compressive yield strength (Mpa)	450–1000	170–310	600
Fracture toughness (MPam ^{1/2})	N/A	50–200	0.7

13th Summer School on Fracture Mechanics

Wroclaw, 3 - 6 September 2013

Wolfgang Dietzel, HZG

Helmholtz-Zentrum Geesthacht

13th Summer School on Fracture Mechanics

Wroclaw, 3 – 6 September 2013

Wolfgang Dietzel, HZG

13th Summer School on Fracture Mechanics

Wroclaw, 3 – 6 September 2013

Wolfgang Dietzel, HZG

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Magnesium in orthopaedics

both pictures: courtesy F. Witte

bone fixation using Mg

The good news: Magnesium corrodes !

Degrading magnesium enhances the formation of new bone material !

13th Summer School on Fracture Mechanics

Wroclaw, 3 – 6 September 2013

Wolfgang Dietzel, HZG

13

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

SRµCT)*of Mg implants

Mg implant corrodes in direct contact to surrounding bone four weeks after operation

3D view of corroding Mg implant in rabbit condyl 12 weeks after operation (red dyed: corroded Mg alloy)

In-vivo degradation of Mg implants

): high-resolution micro computed tomography (μ CT) based on synchrotron radiation

F. Witte, H.-A. Crostack, J. Nellesen, J. Fischer, F. Beckmann, In-vivo Degradation Kinetic of Magnesium Implants, HASYLAB, Annual Report 2003 ¹⁴ 13th Summer School on Fracture Mechanics Wroclaw, 3 – 6 September 2013 Wolfgang Dietzel, HZG

Implants made from magnesium alloys

Stents adjustable degradation rate uniform corrosion

Nerve conduits: forming adjustable degradation rate www.microfab.com courtesy: N. Hort, HZG

13th Summer School on Fracture Mechanics

Cruciate ligament: mechanical stability 6 months

Lumbar interbody fusion: adjustable degradation rate uniform corrosion, porosity?

Wroclaw, 3 - 6 September 2013

Osteosarcoma refilling

Wolfgang Dietzel, HZG

15

8

th Foundation

Bone filling applications (dental / orthopedic):

adjustable degradation rate

mechanical stability

CF testing of tubes for manufacturing stents in enviroment (material WE43)

Wroclaw, 3 - 6 September 2013

Wolfgang Dietzel, HZG

13th Summer School on Fracture Mechanics Wroclaw, 3 – 6 September 2013 Wolfgang Dietzel, HZG

courtesy: Marrey, Burgermeister, Grishaber and Ritchie; Fatigue and life prediction for cobalt chromium stents: A fracture mechanics analysis, 25 Biomaterials 27 (2006) 1988-2000 13th Summer School on Fracture Mechanics Wroclaw, 3 - 6 September 2013

Wolfgang Dietzel, HZG

FE mesh and stress distribution in MPa for a 30 μm corner flaw during the recoil load step

Variation in fatigue-crack growth rates for L-605 alloy under simulated physiological conditions

courtesy: Marrey, Burgermeister, Grishaber and Ritchie; Fatigue and life prediction for cobalt chromium stents: A fracture mechanics analysis, Biomaterials 27 (2006) 1988–2000

27

