Role of hydrogen in service degradation of the physical and mechanical properties of structural steels

Hryhoriy Nykyforchyn*

Trzebnica, 3-6 th September 2013

 $^{^*}$ Karpenko Physico-Mechanical Institute, Lviv, Ukraine

Scope of Lecture

- **1.** Introduction
- **2.** The regularities and effect of hydrogen on degradation of properties
- **3.** Dissipated damaging as the peculiarity of inservice degradation
- 4. In-laboratory modeling of in-service degradation
- **5.** Evaluation of in-service degradation by monitoring of electrochemical properties
- **6.** New challenges in material degradation
- 7. Conclusion

1. Introduction

2. The regularities and effect of hydrogen on degradation of properties

4

KCV tests of transit oil	pipeline ste	el
	State	KCV, J/cm ²
	virgin	180
I DE T	"top"	95
Married Andrews	"bottom"	/ ??

The peculiarities of in-service degradation of trunk gas								
pipeline steels								
Steel	Service, years	Part of pipe	σ _{ys} , MPa	σ _{UTS} , MΠa	RA, %	Elong, %	Harde ning,	<i>J_i/J</i> _{0.2} , kN/m
X52	_		355	475	72,9	22.7	0.59	86/412
X52-12	30	Down	268	451	64.4	20.8	0.74	50/127
		Тор	255	460	62.5	22.9		
		Down	362	536	54.6	29.7		
X52-10		Тор	335	538	55.0	28.8	0.82	37/79
17G1S	_		378	595	79.0	20.2	0.58	203/315
	28		403	590	68.2	20.5		
	29		345	547	71.1	19.6	0.76	
	31		419	574	73.8	21.8		87/201
	38		357	520	73.1	25.4	0.97	
	40		302	515	69.2	26.3	0.75	

Low carbon gas pipeline steels after 28-40 years of service

3. Dissipated damaging as the peculiarity of in-service degradation

The phenomena of degradation caused by dissipated damaging

3.1. Reduction of strength and brittle fracture resistance is a special phenomenon of in-service degradation, caused by accumulation of defects.

3.2 This phenomenon is accompanied by an elongation increase and reduction of area with metal service.

3.3. Damaging become apparent in a decrease of (pseudo ?) elastic module (preliminary damaging) and a decrease of (pseudo ?) yield strength (creation of defects during loading in elastic region)

		P	
Compliance is higher Elastic modulus is constant	~~~		Compliance is higher Is elastic modulus constant ?
	PV	PV	

Usually artificial (in-laboratory) degradation consists in

a preliminary plastic deformation (10 %) with the following heating to 250 °C and holding 1 hour (Soviet standard GOST 7268-82).

It models a deformation aging, when strength, hardness are increased and brittle fracture resistance is decreased.

We developed the method which takes into consideration an effect of hydrogen on the degradation process and models a process of dissipated damaging:

Preliminary (electrolytic charging) hydrogenation of specimen; Electrolytic coating of specimen by copper for hydrogen desorption prevention;

Long-term holding (up to 30 days) of specimen under static loading closer to service one;

Holding of specimen at 250 °C for hydrogen desorption and deformation aging.

6. New challenges in material degradation

The topic for the future Summer School ???

