Probabilistic and statistical approaches of integrity and residual lifetime assessment of structural elements

O. Yasniy*

Trzebnica, 3-6 th September 2013

^{*}Ternopil Ivan Pul'uj National Technical University, Ukraine

Overview

- Present state of probabilistic methods
- Fracture mechanics concepts
- Failure assessment diagram (FAD)
- Concept of probabilistic assessment
- Types and distributions of input parameters
- Data fit and its verification
- Statistical description of da/dN-curves
- Statistical description of C and m
- Ex.1: Probabilistic lifetime assessment of plate with central crack
- Ex.2: Probabilistic assessment of lifetime of railway axle
- Probabilistic assessment of cracked structures limit state
- Ex. 3: Limit state of reactor vessel model
- Conclusions

Present state of probabilistic methods

- Emergence of probabilistic and reliability analysis in the middle of 20th century
- Probabilistic methods at that time, no certainly unified methods, often very simplified
- Quasi-probabilistic approaches for engineer applications (partial safety factors)
- Probabilistic fracture methods as an add-on for deterministic approaches in different standards: BS7910, R6, SINTAP, FITNET, FM-codes
- FM-software: ProSINTAP, ProSACC, EIFSIM, …

Fracture mechanics concepts

Common applications and methods of structural elements assessment with cracks under static, cyclic and dynamic loading

•Input values: geometry, loading, material state

•Static loading: FAD concept

Cyclic loading: crack growth calculations

•Limit state: critical loading and maximal failure size from FAD, accepted crack size

Concept of probabilistic assessment

•Statistical description of data scatter (geometry, loading, and material state)

•Implementation of probabilistic fracture mechanics calculations with appropriate methods: Monte-Carlo simulations (MCS), MCS-IS, FORM, SORM

•Quantitative description of results: probability of failure, variability of life, initial crack size, etc.

Distribution	Parameters of distribution	Probability density function	Eq.
type			
normal	μ - mean σ - variance	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	(1)
	$-\infty < x < \infty, \sigma > 0$		
lognormal	x_0 -location parameter m - scale parameter	$f(x) = \frac{1}{(x - x_0)\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2} \left(\ln\frac{x - x_0}{m}\right)^2\right]$	(2)
	σ - shape parameter $x_0 \le x < \infty, m > 0, \sigma > 0$		
Weibull	x_0 -location parameter β - shape parameter	$f(x) = \frac{\beta}{\eta} \left(\frac{x - x_0}{\eta}\right)^{\beta - 1} \exp\left[-\left(\frac{x - x_0}{\eta}\right)^{\beta}\right]$	(3)
	η - scale parameter $x_0 \le x < \infty, \eta > 0, \beta > 0$		

Types and distributions of input parameters

5

Data fit and its verification

Statistical description of C and m

Statistical description of da/dN-curves

Statistical description of C and m

Railway axle with surface defect

Fig. 2. Cylinder with semi-elliptical surface crack

Semi-elliptical crack with semi-axis ratio of a/c = 0.4 was considered (Fig. 2). Crack depth *a* was chosen equal to 0.5 mm, 1.0 mm, 3.0 mm, 8.0 mm, 16.0 mm and 32.0 mm. Axle diameter *D* in the place of crack was 129.5 mm.

The SSS and SIF of railway axle in highest stresses local field were assessed, where the cracks initiate most often - the place of transition from cylindrical part of axle with diameter 130 mm to the fillet with R = 25 and 35 mm (Fig.1).

260 kN.

Fig. 1. Stress distribution and detail of the mesh for a crack with a = 16.0 mm and a/c = 0.4.

Stress intensity factors of railway axle

The dimensionless SIF Y was calculated by formula: where σ_b – normal stress.

Stress intensity factors of railway axle

Probabilistic assessment of lifetime of plate with central crack

Fig. 1. P. d. f. of final crack length

Example 2: Probabilistic assessment of lifetime

Probabilistic assessment of lifetime of railway axle 21

Probabilistic assessment of the limit state of structures with the cracks

The failure probability is multidimensional definite integral

$$P_{f} = \int_{g(\mathbf{x}) \leq 0} f_{x}(\mathbf{x}) dx.$$
⁽¹⁾

Two different limit state functions g(x) are used

 $g_{FAD}(\mathbf{x}) = g_{FAD}(K_{k}, \sigma_{0,2}, a) = f_{FAD} - K_{r}$ $g_{L_{r}}^{\max}(\mathbf{x}) = g_{L_{r}}^{\max}(\sigma_{0,2}, \sigma_{U}, a) = L_{r}^{\max} - L_{r},$ (2)

where $\sigma_{U} = \sigma_{B}$ — ultimate tensile strength; *a* — crack size; *L*, — ratio of the applied stress to yield stress of the material of the structure with the crack. Limit state functions are based on the standardized procedure SINTAP.

Example 3: Limit state of reactor vessel model

The probability of failure assessment of reactor vessel model after WPS on the basis of FAD taking into account the statistical distributions

• depth of the crack a,

23

- internal pressure *p*,
- yield strength $\sigma_{0.2}$,
- ultimate tensile strength σ_U
- fracture toughness of the material K_{lc} for the case of loading-cycle with total unloading of the specimen.

The model of pressure vessel with a crack on the inner wall

Stress intensity factor (SIF) and limit load (P_L) $K = \sigma_{\Theta} \sqrt{\pi a} Y, \text{ where } Y = 1.14 - 0.48 \frac{a}{b} + \frac{1}{0.2 + 4.9 \left(\frac{a}{b}\right)^{1,2}} \left(\frac{a}{b}\right)^2, \sigma_{\Theta} = \frac{pR_0}{h}$ [Helliot J., 1979] $P_L = \frac{\sigma_y}{(s+b)} \cdot \left(s \ln\left(\frac{R_2}{R_1}\right) + b\left(\frac{R_1}{R_1 + c}\right) \ln\left(\frac{R_2}{R_1 + c}\right)\right),$ where $s = \frac{bc(1 - c / w)}{MR_1 \left(\ln\left(\frac{R_2}{R_1}\right) - \left(\frac{R_1}{R_1 + c}\right) \ln\left(\frac{R_2}{R_1 + c}\right)\right) - c}$ [Laham S., 1998] $M = \left(1 + \frac{1.61b^2}{R_1c}\right)^{1/2}$

	1	
Input data	Distribution type	Parameters of distribution
p, MPa	normal	$\mu_p=32.5; \sigma_p=3.25; 4.875; 6.5$
<i>σ</i> _{0,2} , MPa	lognormal	$x_0=1080, m=20, \sigma=0.4$
σ_{B} , MPa	lognormal	$x_0=1140, m=8, \sigma=0.6$
<i>K_{mat}</i> , MPa√m	Weibull	$x_0 = 141, \beta = 14.39, \eta = 2.04$

Probability density functions

FAD of pressure vessel model under alternating pressure for different crack depth (28, 30, 32 mm)

Dependence of failure probability P_f on a crack depth by alternating pressure, calculated by **MCIS**

Dependence of failure probability P_f on a crack depth by alternating pressure, calculated by **FORM**

CONCLUSIONS

- The c.d.f of cyclic crack resistance characteristics (parameter lgC of Paris law) of 0.45% C steel were constructed and tested by Anderson-Darling GOF.
- The probabilistic analysis of lifetime of commuter train axle with the surface semi-elliptical crack was performed.
- The distribution functions for final crack depth in axle after 10⁶ cycles of block loading were obtained depending on initial defect size.
- The dependencies of reactor model failure probability on the crack depth a were obtained by method of MCIS and FORM.
- The FAD with Monte Carlo method for different crack depth were constructed, considering the pressure as normally distributed random variable.

30