

Przegląd zagadnień związanych z modelowaniem wysokociśnieniowych zbiorników na wodór

Aleksander Błachut

Kompozytowe zbiorniki wysokociśnieniowe

Schemat budowy butli kompozytowej

Nawijanie, wzory mozaikowe

Defekty nawijanych materiałów kompozytowych

Wytwarzanie materiałów kompozytowych metodą nawijania powoduje powstawanie różnego typu defektów, klasyfikowane jako <u>defekty technologiczne</u>.

Obserwuje się występowanie następujących defektów:

•niekompletne przesycenie włókna,

•nierównomierne <u>utwardzenie</u> żywicy,

•obecność pęcherzy (powietrze, inne gazy) i pustek (miejsca nie wypełnione żywicą),

·lokalny brak wzmocnienia (obszary nie zawierające włókien),

- •nierównomierny naciąg włókien,
- •pofałdowanie warstw nawiniętych włókien,
- •uszkodzenie włókien w czasie przeciągania,
- •pęknięcia żywicy, np. przy utwardzaniu,

 <u>rozwarstwienia</u> - płaskie nieciągłości pomiędzy kolejnymi nawiniętymi warstwami równolegle do powierzchni warstw, itp.

[W. Błażejewski]

Obliczenia zbiornika

Obliczenia zbiornika

[T. Czapliński]

Obliczenia zbiornika

Calculated maximum axial displacement at selected temperatures

Calculated hoop stress in the cylindrical part at selected temperatures

[T. Czapliński]

Obliczenia zbiornika, plugin "Wound Composite Modeler For Abaqus"

Abaqus Version 6.7-3 © 2007 SIMULIA, Inc.

Done Geometry Cylinder Geometry Winding	- Windi Lay	ng Levo er Term Not an	ut Controla Ination End Cap 🛞 Move to Trai	reition Point [Info]		Void Mat Material P	orial Jame: Resin	k	×	
Layout	Wind	ngLayo	£.							
	1	Active	Layo r Type	Material	Thickness	Wind Angle	Inner Radius	Outer Radius	Heep Height	Band Width Eactor
	1	4	HELDCAL_FRIC	T1000	1754	5.0	0.5			1
	Z	¥	DOILY	1200	0.05	90.0	2.0	5.0		
	4	V	HELICAL NOTRIC	TL000	0.04	40.0			2.0	1
	5	~	HELDCAL_FROC	T1000	0.05	7	0.5			1
			t applicable to assigned la	ar type						
		K							(Cancel

Obliczenia zbiornika, plugin "Wound Composite Modeler For Abaqus"

ome Name: W	/oundComp-1	
lote: A part w	ill be created with this name.	
Wound Dome	Geometry Dome Mesh Controls	
Dome Geometry	Dome Geometry	
Cylinder Geometry	Seodesic ○ Elliptical ○ Spherical ○ From Part Instance ○ User-Defined	
Winding Layout	Vessel Radius (Rv): 10 Base Wind Angle Info Rv	

Obliczenia zbiornika, plugin "Wound Composite Modeler For Abaqus"

Obliczenia zbiornika, plugin "Wound Composite Modeler For Abaqus"

/ound Dome	Geometry	Dome Mesh Con	trols			
Dome	Dome (Geometry				
Cylinder Geometry	Geo	odesic 🔘 Elliptical	◯ Spherical ◯ Fr	om Pa	Instance 💿 User-Defined	
Winding	User-I	Defined Dome Geom	etry			
Layout		x	Y	~		
	1	10	9.0			
	2	10	9.25		G	
	3	10	9.5			
	4	10	10.0		Last Point	
	5	9.60321265414	12.0233208291			
-	6	9.48974011206	12.2814285601			First H
	7	8.75858614986	13.4415245134			/
	8	8.58408409492	13.6468911056		1	
	9	7.60034254275	14.5407130732			1
	10	7.38452997739	14.6934009131		1	× .
	11	6.22978583601	15.3335484046	-		1
	12	5.98545607017	15.438122081			
	13	4.70328408828	15.8548436963			
	14	4.43426078993	15.9185343814	×		
	Seg	ment Type Between	Points		ì	
	0	Chroliobh 🙆 Colina				

Cel pracy doktorskiej

Obliczenia naprężeń w zbiorniku wysokociśnieniowym, wykonanym technologią nawijania przy założeniach:

- materiał obciążany jest w obszarze sprężystym
- idealnego połączenie żywicy z elementarnymi włóknami
- braku efektów reologicznych w żywicy
- pracy w stałej temperaturze pokojowej
- braku naprężeń wstępnych
- całość struktury nośnej zbiornika zostanie wykonana z kompozytu CFRP

w modelu uwzględnione zostaną:

- rzeczywista geometria wiązki włókna
- geometria komórki elementarnej we wzorze mozaikowym
- zmiana udziału włókna oraz pustek w materiale na różnych obszarach zbiornika

Cel pracy doktorskiej

Zadania pośrednie:

- określenie wad występujących w układzie mozaikowym
- parametryzacja wad (wprowadzenie parametrów numerycznych)
- wyznaczanie naprężeń w zdegenerowanej komórce elementarnej mozaiki

Etapy pracy:

- Przegląd metod matematycznych pozwalających na modelowanie struktur kompozytowych (klasyczne teoria laminatów, homogenizacja, metoda elementów skończonych, inne...).
- II. Wyznaczenie stałych materiałowych oraz zebranie danych technologicznych o modelowanym obiekcie.
- III. Modelowanie części cylindrycznej zbiornika (ograniczenie zagadnienia do rury) oraz weryfikacja doświadczalna.
- IV. Obliczenia dennic i króćca. Weryfikacja doświadczalna całego zbiornika.

Modelowanie w skali mikro, mezo i makro

Ze względu na złożoność problemu oraz różnice związane z skalą zjawisk występujących w zbiorniku proponuje rozpatrywać poszczególne aspekty w ograniczonych modelach (modelowanie wieloskalowe)

Skala modelu	Rozpatrywany obiekt	
mikro	środek pojedynczej wiązki włókna, model dwufazowy (włókno oraz żywica), uwzględnione udział włókna oraz pustek	Stala: 100um
mezo	przestrzenny układ elementarnej komórki mozaiki uwzględnione błędy ułożenia wiązki	
makro	cała powierzchnia cylindryczna zbiornika z wieloma warstwami mozaikowymi	

Modelowanie w skali mikro, mezo i makro

Uwzględnienie poprzecznego odsunięcia wiązki

Model geometryczny pojedynczej komórki mozaiki

Powierzchnia walcowa zbiornika

Wyznaczanie stałych materiałowych kompozytu jednokierunkowego (UD) - metoda homogenizacji

Wyznaczanie własności materiałowych kompozytu jednokierunkowego (UD) - statyczna próba rozciągania / ścina

Statyczna próba rozciągania Przyjmujemy dla kompozytu jednokierunkowego model ortotropowy materiału, którego macierz związków fizycznych można zapisać:

Statyczna próba ścinania

tarcza Arcana

Przykładowe stałe materiałowe włókien i żywicy

Właściwość	Włókno szklane	włókno węglowe	żywica epoksydow a
Тур	ER 3005 (Krosglass)	UTS 5631 12K (TohoTenax)	Epolam 5015 (Axson)
Moduł sprężystości podłużnej [GPa]	73	240	2,9
Wytrzymałość na rozciąganie [MPa]	3400	4800	73
Współczynnik Poissona [–]	0,21	0,285	0,35
Wydłużenie przy zerwaniu [%]	3,5	1,8	7
Średnica włókna elementarnego [µm]	10÷15	6,9	-

Właściwości materiałowe CFRP - UD, wartości otrzymane z statycznej próby rozciagania i homogenizacji

według normy PN EN 527

	statyczna	próba rozc	iąganie	
	próba wzorcowa	P13, P14, P15, P16	ochylenie std. dla P13, P14, P15, P16	homoge- nizacja
temp[°C]	25°C	25°C	25°C	-
E1 (Gpa)	134,2	133,2	7,5	135,9
E2(Gpa)	8,2	8,4	0,7	11,1
E3(Gpa)	8,2	8,4	0,7	11,1
v ₁₂ (Gpa)	0,36	0,31	0,05	0,31
v ₁₃ (Gpa)	0,36	0,31	0,05	0,31
v ₂₃ (Gpa)	0,38	0,40		0,39
G ₁₂ (Gpa)	4,70	4,74		4,17
G ₁₃ (Gpa)	4,697	4,74		4,17
G ₂₃ (Gpa)	2,962	3,00		4,00
$\sigma_{_{11}}^{_{R}}$ (Mpa)	2104	2215	160	-
ε ₁₁ ^R (%)	1,568	1,66%	0,12%	-
σ_{22}^{R} (Mpa)	48,18	22,9	7,7	-
ε ₂₂ ^R (%)	0,599	0,27%	0,12%	-

Właściwości materiałowe CFRP - UD, porównanie płyt

Porównanie właściwości materiałowych otrzymanych metodą statycznej próby rozciągania w temp. pokojowej zgodnie z normą PN-EN 527

	plate	n°	Fiber volu ratio	me	Fiber vol ratio Standa Deviati	ume ird on	poro volu rat	sity me io	porosity volume ratio Standard Deviation		volumic mass	
			%		%		%)		%	kg/m3	
	P13 53,14			2,89		2,6	8		0,64	1,5614		
	P14 55,61			2,6		6,1	.9		1,25	1,5405		
	P15	5	56,92		3,04		3,94			0,97	1,5461	
	P16	5	58,53		3,14		8,6	64		0,85	1,5054	
		c	J R x x	S D	σRxx	E	x	S D	Еx	U _{xy}	SD U _{xy}	
			МРа		МРа	G	ра	G	o a	-		
Ρ1	3		2123		186	127	,614	6	5	0,29	0,03	
Ρ1	4	2139			160 132		,739	9		0,31	0,03	
Ρ1	5		2317		83	133	,798	5	5	0,31	0,04	
Ρ1	6		2281		84	139	,331	7	7	0,38	0,05	

Mikroskopia, przykłady, efekt skali

Zdjęcia mikrostruktury kompozytu CFRP przy powiększeniu ×50, ×200 i ×500, mikroskop optyczny

Zdjęcia mikrostruktury kompozytu CFRP przy powiększeniu ×1100 i ×3200, skaningowy mikroskop elektronowy

Mikroskopia, przetwarzanie obrazu

Identyfikacja udziału pustek przy wykorzystaniu algorytmu do progowania kolorów z programu GIMP

histogram odcieni szarości z programu GIMP

Mikroskopia, przetwarzanie obrazu

Zdjęcie mikroskopowe połączenia obszaru kompozytu wykonanego z włókna szklanego (GFRP) i węglowego (CFRP)

Mikroskopia (udział i rozmieszczenie włokna)

Zdjęcia kompozytu węglowego w powiększeniu x500

Mikroskopia (udział i rozmieszczenie pustek)

Zdjęcia kompozytu węglowego w powiększeniu 50x, żółty kolor oznacza pustki

%

Modelowanie w skali makro (model "warstwowy")

Plany pracy

Część cylindryczna

- eksperymentalne wyznaczanie stałych materiałowych dla układu jednokierunkowego włókna (statyczna próba rozciągania próbek płaskich i próbek Arcana)
- analityczne wyznaczanie stałych materiałowych układu jednokierunkowego metodą jednostopniowej homogenizacji (modelowanie w <u>skali mikro</u>, mikroskopia optyczna)
- wyznaczenie parametrów geometrycznych oraz rozmieszczenia włókna pojedynczej komórki elementarnej we wzorze mozaikowym (badania mikroskopowe / tomografia komputerowa)
- zbadanie powtarzalności (opis statystyczny) komórki elementarnej wzoru mozaikowego w ramach jednego obiektu
- propozycje modeli matematycznych pojedynczej komórki wzoru mozaikowego (modelowanie w <u>skali mezo</u>)

Plany pracy

Część cylindryczna (cd)

- propozycja modelu matematycznego opisującego pojedynczą warstwę wzoru mozaikowego na powierzchni cylindrycznej (modelowanie w <u>skali makro</u>)
- eksperymentalna weryfikacja zaproponowanych modeli (wyznaczanie pola odkształceń metodą cyfrowej korelacji obrazu)

Dennice

 Pozyskane doświadczenie z modelowania części cylindrycznej przenieść na obszar dennic w zbiorniku

Obszar króćca

• ???

Wnioski / mocne strony / słabe strony

- Prowadzenie badań w systemie sprzężenia zwrotnego, czyli uwzględnianie wyników eksperymentu w sakli makro przy tworzeniu założeń do modelu matematycznego
- Próbki do badań eksperymentalnych zostaną wytworzone w ramach własnych możliwości wytwórczych oraz zamawiane u partnerów przemysłowych
- Planowane jest wykorzystanie cyfrowej korelacji obrazu do wyznaczenia pola odkształceń na powierzchni próbek (kupienie "rozwiązania" komercyjnego / samodzielne zbudowanie systemu / zamówienie firmy zewnętrznej do przeprowadzenia pomiarów na określonych próbkach)
- Określenie parametrów geometrycznych pojedynczej komórki w układzie mozaikowym przy wykorzystaniu tomografii komputerowej
- Możliwość przeniesienia zastosowanej metodyki badań na inne obiekty kompozytowe (tkaniny), struktury plastra miodu, biologiczne (skóra).

Dziękuję za uwagę ...

Porównanie mas zbiorników w zależności od konstrukcji

Schematy tworzenia się przeplotów wiązek w czasie nawijania

a) kształt i wymiary wiązki przed ułożeniem na linerze,

b) kształt i wymiary pierwszej wiązki po nawinięciu na liner,

c) ułożenie drugiej równoległej wiązki z zakładką,

d) ułożenie trzeciej wiązki poprzecznej i powstanie przeplotu z lokalnymi miejscami charakterystycznymi – wadami,

Wzory mozaikowe z tablicy opisującej 11 wiązek włókna na obwodzie butli z zaznaczonymi obszarami szczególnymi

