

WYBRANE MASYWNE AMORFICZNE I NANOKRYSTALICZNE STOPY NA BAZIE ŻELAZA - WYTWARZANIE, WŁAŚCIWOŚCI I ZASTOSOWANIE

mgr inż. Marzena Tkaczyk

Promotorzy: dr hab. inż. Jerzy Kaleta, prof. nadzw. PWr dr hab. Wanda Halina Ciurzyńska, prof. nadzw. PCz Opiekun: dr Mariusz Hasiak

Plan prezentacji

- Cel i teza pracy
- Wprowadzenie
- Badany materiał
- Badania struktury materiałów (XRD,EDS/SEM, AFM, TEM)

Metaliczne stopy krystaliczne i amorficzne

• Badania właściwości mechanicznych materiałów

(twardość Vickers'a, nanotwardość, statyczna próba ściskania)

- Badania właściwości magnetycznych
- Badania odporności na korozję elektrochemiczną
- Wnioski

Teza pracy

Możliwe jest wytworzenie stopów na bazie żelaza składających się z fazy amorficznej i nanokrystalicznej charakteryzujących się bardzo dobrymi własnościami magnetycznymi i/lub mechanicznymi bezpośrednio w trakcie procesu ich wytwarzania techniką szybkiego chłodzenia

Cel pracy

Celem przedsięwzięcia jest wytworzenie masywnych amorficznych stopów z wydzieleniami fazy nanokrystalicznej na bazie żelaza, identyfikacja ich własności mechanicznych i magnetycznych oraz analiza wpływu zmian mikrostruktury na własności mechaniczne i magnetyczne wytworzonych stopów

Laboratorium Materiałów Amorficznych i Nanokrystalicznych

Stopy masywne

Cienkie taśmy

Melt-spiner

Unikatowe własności mechaniczne i magnetyczne stopów

Amorficzne i nanokrystaliczne stopy metaliczne - wytwarzanie

Masywne stopy amorficzne - zasady

tworzenia [1]

- stop musi posiadać przynajmniej trzy komponenty z różną wielkością atomową,
- dwa z komponentów muszą być metaliczne,
- całkowita zawartość metaloidów powinna stanowić ok. 20 % atm.,
- różnice między średnicami atomów trzech głównych pierwiastków muszą być większe niż 12% [2]
- [1] T. D. Shen, R.B. Schwarz, Bulk ferromagnetic glasses prepared by flux melting and water quenching, Applied Physics Letters 75 (1999).
- [2] A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Mater. Trans. Japan. Inst. Metals 36 (1995).

Badane materiały

Składy materiałów [% at.]: $1.Fe_{79}B_{20}Cu_1$ $2.Fe_{79}B_{16}Ti_4Cu_1$ $3.Fe_{79}B_{16}Mo_4Cu_1$ $4.Fe_{79}B_{16}Mn_4Cu_1$

Arc-melter

Próbki przed przetopieniem

Próbki przed odlewaniem zasysającym

Pręt $Fe_{79}B_{16}Ti_4Cu_1$ o średnicy 3 mm

Badany materiał - II seria

Składy materiałów [% at.]: $1.Fe_{83}B_{16}Cu_1$ $2.Fe_{76}B_{16}Ti_4Zr_3Cu_1$ $3.Fe_{76}B_{16}Mo_4Zr_3Cu_1$ $4.Fe_{76}B_{16}Mn_4Zr_3Cu_1$

Wyniki badań - struktura materiałów (XRD) - I seria

Wyniki badań - struktura materiałów (XRD) - II seria

Dyfraktogramy rentgenowskie otrzymane dla stopów $Fe_{83}B_{16}Cu_1$ (1), $Fe_{76}B_{16}Ti_4Zr_3Cu_1$ (2), $Fe_{76}B_{16}Mn_4Zr_3Cu_1$ (3) i $Fe_{79}B_{16}Mo_4Zr_3Cu_1$ (4).

Wyniki badań - struktura materiałów (SEM) - I seria

Obrazy powierzchni stopów uzyskane za pomocą SEM dla stopów $Fe_{79}B_{20}Cu_1$ (a), $Fe_{79}B_{16}Ti_4Cu_1$ (b), $Fe_{79}B_{16}Mo_4Cu_1$ (c) i $Fe_{79}B_{16}Mn_4Cu_1$ (d).

Wyniki badań - struktura materiałów (SEM) - II seria

Obrazy powierzchni uzyskane za pomocą SEM dla stopów $Fe_{83}B_{16}Cu_1$ (a), $Fe_{76}B_{16}Ti_4Zr_3Cu_1$ (b), $Fe_{76}B_{16}Mo_4Zr_3Cu_1$ (c) i $Fe_{79}B_{16}Mn_4Zr_3Cu_1$ (d).

Wyniki badań - struktura materiałów (EDS/SEM)

Przykładowy odcisk wgłębnika Berkovich a wykonany w "geometrycznym" wydzieleniu w stopie Fe₇₉B₂₀Cu₁.

Analiza EDS dla stopu Fe₇₉B₂₀Cu₁.

a)

Wyniki badań - struktura materiałów (EDS/SEM)

Punkt	Pierwiastek (% atm.)				
	Żelazo	Bor	Miedź		
1	61,18	38,82	-		
2	97,31	-	2,68		
3	62,88	37,12	-		
4	96,23	-	3,77		

Punkt	Pierwiastek (% atm.)		
	Żelazo	Tytan	
1	100	-	
2	95,2	4,80	
3	100	-	
4	94,71	5,29	

Punktowa analiza EDS dla stopu $Fe_{79}B_{20}Cu_1$ (a) oraz $Fe_{79}B_{16}Ti_4Cu_1$ (b).

Wyniki badań - struktura materiałów (AFM) - seria I

Topografia powierzchni uzyskana za pomocą AFM dla stopów Fe₇₉B₂₀Cu₁ (a), Fe₇₉B₁₆Ti₄Cu₁ (b), Fe₇₉B₁₆Mo₄Cu₁(c) i Fe₇₉B₁₆Mn₄Cu₁ (d), poddanych trawieniu azotalem. Badany obszar: 40 µm x 40 µm.

Wyniki badań - struktura materiałów (AFM) - seria II

Topografia powierzchni uzyskana za pomoca AFM dla stopów Fe₈₃B₁₆Cu₁ (a), Fe₇₆B1₆Ti₄Zr₃Cu₁ (b), Fe₇₆B₁₆Mo₄Zr₃Cu₁(c) i Fe₇₉B₁₆Mn₄Zr₃Cu₁ (d), poddanych trawieniu azotalem. Badany obszar: 40 μm x 40 μm.

Wyniki badań - struktura materiałów (LFM)

Przykładowe wyniki badań uzyskane za pomocą mikroskopu sił poprzecznych dla stopu Fe₈₃B₁₆Cu₁ w trakcie skanowania ze strony lewej na prawą (a) i prawej na lewą (b). Badany obszar: 40 µm x 40 µm.

Wyniki badań - struktura materiałów (AFM)

Wyniki badań - struktura materiałów (TEM)

Obraz powierzchni uzyskany za pomocą TEM dla stopu $Fe_{79}B_{16}Ti_4Cu_{1.}$

Wyniki badań - struktura materiałów (TEM)

Obrazy powierzchni oraz dyfrakcje uzyskane za pomocą TEM dla stopu Fe_{79}B_{16}Ti_4Cu_{1.}

Wyniki badań - twardość

Twardość materiałów obliczona metodą Vickersa z zastosowaniem obiążenia wynoszącego 2 kg.

Grupa materiałów	Lp.	Badany stop	Twardość (HV2)
stop bazowy	1	Fe ₇₉ B ₂₀ Cu ₁	1148,1
Stop bazowy II	2	$Fe_{83}B_{16}Cu_1$	975,3
l seria	3	Fe ₇₉ B ₁₆ Ti₄Cu ₁	723,4
	4	Fe ₇₉ B ₁₆ Mo ₄ Cu ₁	918,1
	5	Fe ₇₉ B ₁₆ Mn ₄ Cu ₁	754,2
ll seria stopów	6	Fe ₇₆ B ₁₆ Ti ₄ Zr ₃ Cu ₁	782,6
	7	Fe ₇₆ B ₁₆ Mo ₄ Zr ₃ Cu ₁	679,3
	8	Fe ₇₆ B ₁₆ Mn ₄ Zr ₃ Cu ₁	609,2

Wyniki badań - nanotwardość

Grupa	Lp.	Badany materiał	Twardość instrumentalna [MPa]	Instrumenta Iny moduł sprężystości [MPa]	Twardość Vickersa [HV]	Twardość Martensa [MPa]
Stop bazowy I	1.	$Fe_{79}B_{20}Cu_1$	14156,08	160,11	1311,00	7981,87
Stop bazowy II	2.	$Fe_{83}B_{16}Cu_1$	10828,28	84,85	1002,81	5239,49
l seria	3.	$Fe_{79}B_{16}Ti_4Cu_1$	8568,14	96,08	793,50	5012,74
stopów ·	4. 5.	$Fe_{79}B_{16}Mo_4Cu_1$ $Fe_{79}B_{16}Mn_4Cu_1$	9446,43	135,41	989,39 874,84	5647,25
II seria stopów -	6. 7.	$Fe_{76}B_{16}Ti_4Zr_3Cu_1$ $Fe_{76}B_{16}Mo_4Zr_3Cu_1$	9822,07 7644,21	111,31 83,44	909,64 707,94	5634,98 4325,78
	8.	Fe ₇₆ B ₁₆ Mn₄Zr ₃ Cu ₁	7802,78	84,86	722,62	4459,83

Wyniki badań - statyczna próba ściskania - I seria

Wyniki badań - statyczna próba

Przykładowe wykresy zależności przemieszczenia od siły ściskającej dla stopów Fe₈₃B₁₆Cu₁, Fe₇₆B₁₆Ti₄Zr₃Cu₁, Fe₇₆B₁₆Mo₄Zr₃Cu₁ i Fe₇₉B₁₆Mn₄Zr₃Cu₁.

Wyniki badań - statyczna próba

ściskania c.d.

Grupa	Lp.	Badany materiał	Δl [mm]	F [kN]	6 _{max} [MPa]	Sztywność [kN/mm]
Stop bazowy	1	Fe ₇₉ B ₂₀ Cu ₁	0,66	26,70	3908,21	53,52
Stop bazowy II	2	Fe ₈₃ B ₁₆ Cu ₁	0,60	26,20	3792,22	52,65
	3	Fe ₇₉ B ₁₆ Ti ₄ Cu ₁	0,46	20,26	2966,26	57,43
l seria stopów	4	Fe ₇₉ B ₁₆ Mo ₄ Cu ₁	0,47	18,50	2703,28	61,85
	5	Fe ₇₉ B ₁₆ Mn ₄ Cu ₁	0,50	22,06	3228,82	60
II seria stopów	6	Fe ₇₆ B ₁₆ Ti ₄ Zr ₃ Cu ₁	0,34	9,98	1431,06	55,07
	7	Fe ₇₆ B ₁₆ Mo ₄ Zr ₃ Cu ₁	0,35	15,30	2239,12	59,4
	8	Fe ₇₆ B ₁₆ Mn ₄ Zr ₃ Cu ₁	0,40	16,00	2326,89	58,35

Własności magnetyczne (VSM)

Przykładowe pętle histerezy magnetycznej dla stopów Fe₇₉ $B_{20}Cu_1$, Fe₇₉ $B_{16}Mn_4Cu_1$, Fe₇₉ $B_{16}Ti_4Cu_1$ i Fe₇₉ $B_{16}Mo_4Cu_1$.

Własności magnetyczne (VSM) - c.d.

Przykładowe pętle histerezy magnetycznej dla próbki stopu Fe₇₉B₂₀Cu₁ uzyskanych z pręta oraż nadlewu.

Badania odporności na korozję elektrochemiczną

Przykładowe krzywe potencjodynamiczne dla stopów $Fe_{83}B_{16}Cu_1$ (11), $Fe_{76}B_{16}Ti_4Zr_3Cu_1$ (12), $Fe_{76}B_{16}Mo_4Zr_3Cu_1$ (13) i $Fe_{79}B_{16}Mn_4Zr_3Cu_1$ (17).

Wnioski

- 1. Istnieje możliwość wytworzenia stopów w których występuje struktura amorficzna i nanokrystaliczna bezpośrednio w procesie produkcji metodą szybkiego chłodzenia z zastosowaniem komersyjnego stopu Fe-B.
- 2. Własności mechaniczne badanych stopów na bazie żelaza otrzymanych metodą szybkiego chłodzenia w dużym stopniu zależą od ich składu chemicznego i struktury wewnętrznej.
- W pracy wykazano, że największą wytrzymałością na ściskanie oraz twardością cechował się stop Fe₇₉B₂₀Cu₁, w strukturze którego występują duże, twarde wydzielenia fazy międzymetalicznej.
- Wprowadzenie do stopów kolejnego dodatku stopowego (Zr) powoduje wzrost ilości faz krystalicznych w stopach Fe₇₉B₁₆Mn₄Cu₁, Fe₇₉B₁₆Ti₄Cu₁ i Fe₇₉B₁₆Mo₄Cu₁.

Wnioski c.d.

- 5. Badane stopy cechują się anizotropowymi własnościami magnetycznie miękkimi.
- 6. Stop Fe₇₉B₂₀Cu₁ cechuje się największą magnetyzacją nasycenia.
- 7. Dodatki stopowe, takie jak Mo, Ti, Mn, Zr podwyższają odporność na korozję elektrochemiczną stopu $Fe_{83}B_{16}Cu_1$.

Planowane badania/badania w toku

- Statyczna próba ściskania z zastosowaniem tensometrów
- TEM
- Badania korozji elektrochemicznej
- Spektroskopia Mössbauera

Dziękuję za uwagę