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Introduction

The measurement and proper modeling of the vibration properties of mechan-
ical systems subjected to complex dynamical loads (e.g. random loads) are
indispensable for a wide range of engineering applications. The process of con-
structing a model of a material system belongs to one of the most demanding
branches of mechanics. Still its importance for technological applications has
grown rapidly in recent years. This is due to the high requirements which
a constructed model must meet with regard to the precision of the description
and analysis of the behavior of the whole system under investigation. This
applies particularly to automobile and aerospace applications in which the
elasto-plastic properties of individual components have a significant effect on
the vibrations of the whole system and the reliability in cyclic load conditions
must be defined precisely.
The prevalent methods of investigating mechanical systems are the appli-

cation methods related to experimental modal analysis. The method of exper-
imental modal analysis allows one to determine the so-called “modal model”
and more precisely, to ascertain its parameters such as natural frequency and
modal damping, and coefficients of a modal matrix whose columns correspond
to the particular forms of vibration. One should notice that a modal model
determined in this way allows one to establish a system’s response to any deter-
ministic or random dynamic excitation. In this context, a question arises: How
accurately does a model constructed in this way reflect the properties of the
real system? If we notice that the shape of the modal model has been derived
from the theory of linear systems, then the use of modal analysis in the case
of nonlinear systems reduces itself to searching for an optimal linear model in
which nonlinear effects, nonetheless, do not occur. It should be emphasized,
however, that though the shape of the modal model is known, its concrete form
does not stem from the knowledge of the structure of a real system (whose
structure allows one to obtain a model in the form of differential equations
by using, for example, the Lagrange equations), but is an outcome of the ap-
plied experimental method in which the system is the so-called “black box”.
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Therefore the method of experimental modal analysis plays rather a role of
the functional identification of a real system, which does not detract, however,
from its universality in the sphere of applications.
From the point of view of technological applications, the identification or

modeling of a real system (so-called material system) is effective if the model
reflects accurately enough the behavior of the whole construction investigated
in a specified interval of its operation (e.g. a machine’s service life). It can
be assumed that the majority of engineering constructions fulfill both the
linearity condition (the loads superposition condition) and the time invariant
condition in the case of weak vibrations and in a specified (finite) time of their
observation.
However, the situation is slightly different when the changes occurring in

a machine’s component under continuous cyclic loads are the object of our
interest. As is well-known, the basic measure of such changes can be the en-
ergy loss. However, to estimate it correctly, a precise model of the vibration
damping, taking into account not only the viscous friction but also the resis-
tance to motion associated with dry friction, must be introduced. Therefore
a nonlinear-type model, which would describe much more accurately the dy-
namic properties of the tested element of a machine than the commonly used
linear model, is adopted. It is especially interesting from the point of view ap-
plications how the nonlinear damping characteristic would change during the
operation of the component until, for example, its failure. It seems that the
changes in the shape of this characteristic could oftentimes provide important
clues as to the life of the tested machine element and thus could be used in its
diagnosis (similarly as the Frequency Response Function). A significant break-
through in this area would be brought about if we managed to develop some
identification methods of designing material systems on the basis of a suitable
gamut of nonlinear models.
The present work provides a corpus of numerous solutions in this domain,

worked out mainly by the author and his team. These solutions (their con-
cepts, including the theoretical basis and experimental verification) have been
presented separately many times at various conferences, and some of them
have also been published. Nevertheless, a comprehensive study in this area,
covering general methods and procedures, seems to be advisable. Only this
kind of treatment can bring out the totality of the presented solutions and
contribute to their universal use in technological applications. However, to
understand fully the methods considered here, they must be presented against
the background of the general problems of the identification and modeling of
material physical models, which has been done in the first chapter of this work.
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All the methods discussed have been divided into two parts. In the first
part (chapter 2), procedures whose use requires the selection of proper excita-
tions (e.g. sinusoidal resonance frequency excitations) are presented, whereas
methods suitable for any type of dynamic excitation, both determined and
random, are described in the second part (chapters: 3, 4, 5). It should be
added that some of them have been presented in Polish by Stanisław Piesiak –
co-author of papers [3.1, 3.2, 4.5, 4.6] (see [3.9]). The last (chapter 6) provides
general way for an arbitrary real-life dynamic system.
This book is addressed to engineering offices and groups that need people

with a knowledge of the testing of mechanical systems under complex dynam-
ical loads. The methods presented can also be useful in material laboratory
testing being specialized especially in an evaluation of dynamical properties
of composite materials. The readers who are interested only in practical ap-
plications can reduce the study to chapters 1 and 6 of the book.





Chapter 1

Depicting of the general problem

When analyzing complex vibrations of real-life material systems (e.g. build-
ings, bridges, vehicles, machines, etc.) we usually apply the well-known mathe-
matical methods related to spectral analysis, the theory of linear systems, the
Laplace operator technique or correlation analysis. However, the automatic
application of these methods can often lead to an erroneous interpretation of
the results. This can happen especially in the area of the testing of mechanical
systems. Therefore, let us begin with a sketch of a certain way of perceiving
obvious things whose nature one does not fully comprehend.
Those who deal mainly with real mechanical systems (so-called physical

systems) stand at the boundary of two worlds. On the one hand, having ab-
stract notions (such as a square, a circle, a function, an operator, density,
acceleration) at their disposal, they believe in the reliability of the methods
based on these notions. On the other hand, often frustrating experiences from
their practice usually connected with discrepancies between the results of ob-
servation and theory, teach them to treat calculated results with some reserve.
They often find the latter baffling or sometimes even shocking. We shall call
this other world which can be explored through our senses (sight, touch, smell,
etc.) the world of material facts. Let us also notice that the world of ma-
terial facts is independent of man (e.g. he/she cannot change the sense of the
gravitational force). Whereas man governs the world of abstractions, which
he/she creates according to his/her wishes and needs (similarly as in the case
of rules and methods of playing chess).
For instance, while observing the relationship between the increment in

a bar’s length and the value of the tensile force (Fig. 1.1a), the results of the
observation itself can be presented schematically as in Fig. 1.1b. At this stage,
by selecting from the arsenal of abstract notions such concepts as a variable and
a linear function, we are constructing something which we shall call a model of
our system. Let us then assume that the cause (i.e. the force) will be described
by real variable P , whereas the increment in length (the effect), by real variable
∆l (see Fig. 1.1c). Because of certain “similarity” between observation results
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(c) a proposed
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a linear function

Figure 1.1. A sample description of a material system

(b) and linear function (c) we decide to use linear function∆l = aP to describe
our system, where the fitting of value a constitutes a separate problem (lying
in the sphere of approximation and optimization). Naturally, here we can try
to adopt, for example, random variables instead of real variables P and ∆l,
or assume a nonlinear function ∆l = a1P + a2P

3. Therefore, we come to the
conclusion that the choice of a model for the system depends on the individual
who deals with the problem. In our example, the real bar (Fig. 1.1a) will be
called a material system or an object of an inquiry, whereas its linear function
∆l = aP will be labeled a model. Variable ∆l (the effect) will be referred
to as a model of the object’s output quantity (a model of length increment),
whereas variable P (the cause) will be called a model of the object’s input
quantity (a model of force).
In other words, we can say that in the world of material facts we find

a relationship between empirical variable ∆̂l (length increment) and empiri-
cal variable P̂ (force), which we model by a linear function that assigns real
variable P to real variable ∆l (see Fig. 1.2).
Another example of a physical system can be a motor mounted on a shop

floor (Fig. 1.3). If we are interested in the movement of the floor produced by
the motor’s rotation at a specified speed, then we usually reduce the cause
(the input quantity) to certain force whose model can be certain sinusoidal
function p(t).
Whereas the effects (the movement of the floor) can be described by a cer-

tain number of time-dependent functions xi(t), put in the form of certain
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Figure 1.2. An object and model as a relation between input and output quantities
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Figure 1.3. A diagram of a physical system (a) and its model (b)

vector x(t) = (x1, x2, . . . , xn)T . The definition of the relationship between
pi(t) and x is more complicated.
Let us now consider a more complex system, such as a bridge, whose move-

ments (usually vibrations) are produced by the vehicles going over it and by
weather conditions (jumps in temperature, winds, etc.). In this case, the de-
finition of “input quantities” becomes much more complex. If by the “input
quantities” of a material system (an object) we understand all the causes pro-
ducing specific changes (movements) of this system, then we should specify the
number of vehicles, as well as their speeds, accelerations and positions, direc-
tions and velocities of winds, jumps in temperature, etc. The same applies to
the notion of an object’s “output quantity”. We can observe the movements of
a specific point on the bridge in three different directions (the vertical one and
two horizontal ones), and there is an infinite number of such points. A general
scheme of an object can have the form shown in Fig. 1.4. By an object (a phys-
ical system) we shall understand a certain observed relationship between the
set of output quantities (the effects) and the set of input quantities (causes). In
the case of dynamic systems (the causes and the effects are time-dependent),
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Figure 1.4. A general scheme of a complex dynamic object

input quantities and output quantities are modeled by means of deterministic
or random time functions (random processes). The use of scientific methods in
the investigation of the real world of physical facts consists in the adoption of
a specific model fitting the analyzed phenomenon (an object of the inquiry).
Such a model constructed on the basis of exact abstract notions (e.g. concen-
trated force, random function, operator, vector, etc.) is then subjected to close
scrutiny. The model should be constructed on the basis of a carefully planned
identification procedure which (when carried out properly) would eliminate if
possible the often deceptive engineering intuition.
For example, if we consider a typical vibrating system consisting of mass

supported horizontally by an element having elasto-damping properties (e.g.
a rigidly fixed beam made of a specific material whose dynamic properties are
unknown (see Fig. 1.5)), then the equation of dynamic equilibrium for mass
shall be written as

mẍ + F (?) = p(t) (1.1)

where the particular symbols denote: m – real variable describing the value of
mass m̂, ẍ – function of a real variable of time t describing acceleration â, F (?)
– certain function with unknown arguments (usually assumed as a function
of speed ̂̇x and displacement x̂ of mass m̂)) which describes the effects of the
element (a beam) on mass m̂, p(t) – certain real function describing an exciting
force.
It is then assumed (most often in this case) that the dynamic properties

of the elasto-damping element are described by the elastic coefficient (c), and
damping coefficient (k). This approach follows from the adoption of a linear
model whose configuration is parallel (see Fig. 1.5 model (a)). However, we
could just as well assume for this case a model in other form (see Fig. 1.5).
A parallel-configuration model (model (a)) is commonly assumed for complex
systems with many degrees of freedom because the adoption of a model in this
form for each elasto-damping component of a machine leads to a system of
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Physical system =⇒ physical model =⇒ mathematical model
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mẍ + F (?) = p(t)

Figure 1.5. It is the art to assume “a priori”
a specific proper class of model of the function F (?)



14 Depicting of the general problem

linear differential equations with constant parameters, the theory of which is
well known and which are easy to apply now (professional computer software).
It is worth mentioning that a professional method of the experimental

analysis of dynamic systems called Experimental Modal Analysis, has
been developed [1.1, 1.2, 1.5, 1.6, 1.19–1.22]. The method is described from
the theoretical viewpoint, for example, in [1.19], while interesting practical
applications can be found in papers [1.15, 1.18]. To apply the experimental
modal analysis method in practice, one needs special equipment (multi-channel
analyzers, impact testing machines, accelerometers). There are, however, sit-
uations when linear physical models can simplify a real system too much.
We shall exemplify this using one of the real systems shown in Fig. 1.5. Let

us assume that this system functions exactly in accordance with the following
equation

mẍ + h Sgn v + k1v + k3v
3 + k5v

5 + cx = p(t) (1.2)

(v = ẋ) and that under continuous cyclic loads, the dynamic properties of this
system change gradually (aging of the material, creep, etc.). The damping
properties of the dynamic system are defined by the parameters of certain
(nonlinear!) function Fd(v) which describes a damping interaction force and
which is dependent usually on velocity. Thus when the dynamic properties
of a real system change (fatigue), it follows that parameters of the function
Fd(v) also can change gradually in time (see Fig. 1.6). Thus, the form of a real
system damping function can change gradually. One should note that the
damping function can provide valid indications as to the necessity of replacing
the elasto-damping element of a machine.
However, to ascertain this, one should know how to determine the form

of the damping function of a given elasto-damping element of a ma-
chine at any time in its service life. Therefore it becomes necessary to
develop new research methods (identification procedures) based on complex
nonlinear dynamic models.
The construction of a mathematical model of an object on the basis of

measured outputs x̂ and inputs p̂ can be divided into two stages:
1. Modeling which consists in determining the model’s “class”, i.e. oper-

ator x = ϕ(p, t,D), where p, x are called the model’s input and output values,
respectively.
2. Parametric identification whose aim is to determine such constants

of matrix D so that operator ϕ will describe the investigated object best
(according to a specific criterion) (see Fig. 1.7).
A typical example of this process in the dynamics of material systems is

the determination of the values of mass mij , damping kij and rigidity cij , i.e.
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Figure 1.7. A general scheme of the typical parametric identification process

the terms of matrix D = [M,K,C] of an a priori assumed model in the form

Mẍ + Kẋ + Cx = p (1.3)

where p = (p1, p2, . . . , pN )T , x = (x1, x2, . . . , xN )T [1.2, 1.7–1.9]. Depending
on what identification criterion is assumed (this consists in the adoption of
a specified measure of “distance” δ between the model and the object: δ =
||x̂ − x||, if p̂ = p), there is a great variety of methods of determining matrix
coefficients M, K, C, difficulties with the identification are encountered only
in the case of very high values of number N . For linear systems with a large
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number of degrees of freedom there are modal analysis methods available that
have been developed in recent years.
A model in the form of the system of equations (1.3) is usually based on

the prior construction of so-called physical model [1.4, 1.16] which is a discrete
mechanical system with N degrees of freedom with generalized displacements
and exciting forces.
A typical way of constructing a model of a real object, consists of the two

activities:
– the idealization of the object aimed at obtaining a material model

(e.g. by assuming that certain components of the object are ideally rigid, the
foundation is motionless, the linear elastic stresses are without damping or
with viscous damping, etc.)
– the close analysis of the physical model by means of laws of me-

chanics (d‘Alambert’s principle, the Lagrange equations) aimed at obtaining
the so-called mathematical form of the model.
A schematic diagram of this method of searching for a reliable model of

an object is shown in Fig. 1.8. Since the model’s class can be determined
in this case through analytical considerations, we are dealing here, from the
point of view of the theory of identification, with the so-called “gray box”.
Such a model, however, can describe the object inaccurately if its idealization
is not accurate enough. Therefore, the “construction” of a physical model is
regarded to be of fundamental importance for the process of identification in
the dynamics of mechanical structures.
If one assumes that the physical model of the dynamic object under inves-

tigation is a certain material system, then the preliminary activities consist in:
a) the determination of the number of particles, and the number and qual-

ity of constraints (i.e. determination of the degree of freedom),
b) the assumption of a specific form of the internal forces reacting between

the particular particles,
c) the adoption of a specific form of the external forces acting on the

particles of a discrete mechanical system, i.e. a model of the object’s input
signals (a model of exciting forces p).
The assumptions about the character of the internal forces (mentioned in

point b) always raise most doubts. If the aim of the activities mentioned in
point a) is to perceive the similarities in the internal organizational struc-
ture between the construction investigated and a specified discrete dynamic
system and those in point c) to approximate measured time run by specific
time function p(t) the assumptions in point b) are usually made without any
preliminary investigation and that is why they determine the so-called distance
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of the model’s ultimate form from the analyzed object. According to a gener-
ally advanced hypothesis, “elastic force” Fs(x) and “damping force” Fd(ẋ) act
parallelly – usually as linear functions of arguments x, ẋ, where x denotes the
relative displacement of two selected particles of a discrete mechanical system
(see Fig. 1.9). Consequently, a model in form (1.3) is obtained. This model
describes precisely enough most of the mechanical structures, especially in the
case of weak vibrations, and being relatively simple, it is easy to use. Never-
theless, the requirements which modern mechanical constructions must meet,
especially the ones stemming from the need to save materials and energy,
force persons dealing with the dynamics of machines and structures to use
models more precise than model (1.3). Such models will be, obviously, more
complex and thus more difficult to handle in engineering practice, but this
does not constitute an insurmountable obstacle because of the development of
computer technology.
One of the procedures which will be considered in this book is created

without assumptions b), i.e. no concrete form of the internal forces is assumed
a priori. The primary task of the methods is to determine the internal forces
treated as certain unknown functions of velocity and displacement (Fig. 1.10).
To determine precisely function F (x, v) which describes the dynamic prop-

erties of a selected element of a given mechanical structure, this element must
be isolated maximally during testing. Ideally, the test stand should be built in
such a way that the element could be treated as a system with one degree of
freedom. This is associated with costs of the experiment (the disassembly of
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the construction, the disabling of some of its segments, etc.). Hence a recent
trend in methods of the identification of complex material systems consists
in, for example, such controlling of the internal forces (excitation) that they
generate such vibration of a selected component of the construction, which
will be in a specific way “similar” to the vibration of a system with one degree
of freedom. This approach has been used commonly in the domain of linear
systems, but the same concept has been applied successfully also to some
nonlinear systems (e.g. [1.12]). That is why the identification of a system with
one degree of freedom, in which the whole problem of identification reduces
itself to the determination of function F (x, ẋ) in the following equation

mẍ + F (x, ẋ) = p(t) (1.4)

describing the motion of a particle with constant mass m, is treated in this
work as the most important case.
The problem of determining the proper form of function F , treated as

certain relation F (x, ẋ), has been considered many times in papers dealing
with the identification of nonlinear systems. It is worth mentioning here works
by Kononienko and Plachtenko in which methods that allow one to obtain
function F (x, ẋ) in a linearized form (additional dependence on the amplitude
of vibration) under certain added preliminary assumptions as to its shape are
described [1.11].
In 1979, Masri and Caughey pointing to the drawbacks of the then existing

methods of nonparametric identification, presented [1.13, 1.14] an identification
procedure whose idea consists in the direct measurement at the same instants
of all the variables of equation (1.4) (i.e. values ẍk = ẍ(tk), ẋk = ẋ(tk), xk =
x(tk), pk = p(tk) for k = 1, 2, . . . ,K) and the approximation by Czebyshev
polynomials of empirical relation F̂k = F̂k(xk, ẋk), obtained as follows

Fk(xk, ẋk) = pk −mẍk.

This book presents, among other things, two methods (see chapter 2) that
allow one to verify experimentally the assumption which neglects component
∆F (x, ẋ) of function F (x, ẋ) written as

F (x, ẋ) = Fs(x) + Fd(ẋ) + ∆F (x, ẋ). (1.5)

The first of them requires periodic excitation producing a harmonic response
in the system under investigation, while the second one consists in the passive
observation of free vibration. One should notice that the absence of component
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∆F (x, ẋ) corresponds to the so-called parallel configuration of a material model
(see Fig. 1.5a) whose motion is described by the following equation

mẍ + Fd(ẋ) + Fs(x) = p(t). (1.6)

Then amethod of determining damping function Fd(ẋ) for systems described by
(1.6) was devised, assuming that the elastic force is described by any nonlinear
function Fs(x) (section 2.4). The method was extended (section 2.5) to systems
with many degrees of freedom, but having a chain-like structure (see Fig. 2.47).
The method presented in section 2.2 is, however, somewhat different since it
is based on the so-called universal material model (see Fig. 2.3), for which the
equation of motion of mass m assumes the following form

mẍ + F (x, ẋ,
...
x, ṗ) = p(t).1 (1.7)

The primary task of this method is to describe accurately such phenomena
occurring in mechanical constructions, which in order to be incorporated re-
quire that the spring and the damper are connected in series (see Fig. 2.1b), or
maybe also that the so-called Reid spring is introduced into the material model.
Because both the methods described in section 2.3 and the method presented in
section 2.2 can be used to determine the proper configuration for the material
model of an investigated dynamic system (especially, to verify hypothesis about
parallel configuration constituting a basic assumption for the method described
in section 2.4), they can be treated as preliminary to the procedures described
in sections 2.4 and 2.5. For this reason, the general procedure of using these
methods is explicated in the last section of chapter two (section 2.6). This
procedure allows one to determine a form for the mathematical model of a real
system. However, to carry out tests according to this procedure, specially con-
trolled dynamic excitations must usually be used. Therefore a separate group
of methods suitable for any excitations is presented in the further chapter. And
so the methods described in section 3 were developed to be used in arbitrary
operating conditions. Therefore they can be used for any periodic excitations,
both continuous and impulse ones. Similarly the methods explicated in chapter
4 can be applied in the cases when random input functions with an arbitrary but
stationary probability distribution act on the object. However, the use of these
methods requires the prior knowledge of the model’s form and thus they belong
rather to methods of the parametric identification of dynamic systems. For this
reason, the recommended methodology of applying all the methods described
in this work to a concrete physical system is presented in the last chapter.

1 It is a system with 1.5 degree of freedom [1.10] and hence the relationship between
force F and variables

...
x and ṗ.
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linejnych kolebatelnych sistem, (in Russian), Naukova Dumka, Kiev 1976.

[1.12] Kulisiewicz M., Metoda seperacji wielowymiarowego zagadnienia parame-
trycznej identyfikacji obiektów dynamicznych w przypadku nieliniowego
dyskretnego modelu o strukturze szeregowej, (in Polish), Nonlinear Vibration
Problems, No. 20, Polish Academy of Sciences, 1981, pp. 247–282.

[1.13] Masri S. F., Caughey T. K., A Nonparametric Identification Technique for
Nonlinear Dynamic Problems, Journal of Applied Mechanics, Vol. 46, June
1979, pp. 433–445.

[1.14] Masri S. F., Sassi H., Identification and Modeling of Nonlinear Systems, Nu-
clear Engineering and Design, Vol. 72, No. 2, 1982.

[1.15] Morrison F., The Art of Modeling Dynamic Systems, Multiscience Press, Inc.,
1991.
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Chapter 6

Conclusion. Application guidelines

In this chapter a review of the methods described in the previous chapters,
focusing on their application is presented. Against the background of the gen-
eral problems (chapter 1), we shall show possible applications of these meth-
ods to the modeling and identification of elasto-damping elements (EDE) of
machines.
As has been established (see chapter 1), the following two stages can be

distinguished in a typical process of the identification and modeling of real
systems:
a) determining the class of a model,
b) determining the values of the parameters of a model of this class (para-

metric identification).
When such a model is constructed for static load conditions, the relation-

ship between the effect (e.g. deformation) and the cause (the loading of the
structure) is usually defined by a function whose form (class) is determined
on the basis of certain “observation” of the results of the experiment. In the
case of one input value and one output value (e.g. tension, compression), this
“observation” is limited to the visual determination of the empirical relation
between these variables systematized in a specified way (e.g. points on plane
xy). The situation gets slightly more complex when there is a larger number
(more than two) of independent variables. Then it becomes impossible to
determine the type of relation y(x1, x2, ..., xn) on the grounds of the overall
“visual shape” of empirical relation ŷ(x̂1, x̂2, ..., x̂n). A typical approach in
such a case is to a priori assume the following linear dependence

y = c0 + c1x1 + c2x2 + · · ·+ cnxn (6.1)

as a certain “output” form of a model of empirical relation ŷ(x̂1, x̂2, ..., x̂n)
and to determine the optimal values of parameters c0, c1, c2, . . . , cn using the
regression analysis [2.22, 3.6]. The specific parameters of this analysis (the
standard deviation, the confidence intervals and the correlation coefficients)
determine the degree of accuracy of the model obtained but only for the
range of variables x1, x2, ..., xn in which the function was tested.
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We have to deal with a similar but much more difficult situation when
modeling phenomena produced by variable-in-time input quantities. For ex-
ample, to analyze fast-changing cyclic loads acting on the supporting struc-
ture of a machine a rather accurate dynamical model is required. If one as-
sumes that input quantities in such a case are defined by certain excitation
column vector p(t) and output quantities – by certain generalized displace-
ment vector q(t), then relation q(p) must have the character of an operator
since variables q, p are time functions.
A linear model is a priori assumed (similarly as in statics) for typical vi-

brating engineering systems. It usually has the form

Mq̈ + Kq̇ + Cq = p (6.2)

and is determined on the basis of either the knowledge of the structure of a real
system or an analysis of measured response q̂(t) to specified set of excitations
p̂(t) (e.g. by means of experimental modal analysis methods [1.1, 1.17–1.20]). In
both cases, however, a form of the model depends on the test vibration range
(the range of excitation frequency and amplitude). If this range is changed,
not only the values of the model parameters within the same class need to
be changed but also nonlinear elements of specific form must be added to this
model. Therefore to determine the ultimate form of the model, one must specify
the range and the kind of dynamic excitations which act on the real system.
Since this is closely connected with the goal of modeling, we shall discuss these
aspects in the context of the modeling of elasto-damping elements of machines.
Taking into account the fact that each element of a real system in me-

chanics has its mass and is deformable under the action of forces, it is difficult
to define precisely an element like this. Nevertheless such elements are dis-
tinguished in real systems by reason of their relatively high flexibility and
small mass (e.g. springs, rubber suspensions, pneumatic suspensions, etc.).
The flexibility characteristics of such elements play a special role in a system
and are usually selected specifically for this purpose (e.g. a windscreen pillar
in a bus, a bar in a plane’s or helicopter’s load-bearing structure, etc.).
In a real system, an elasto-damping element carries over dynamic loads

from part A to part B of the system, being subjected itself to variable-in-time
deformations. It is extremely difficult to model it in such conditions and that
is why two parameters associated with a linear parallel-configuration model,
i.e. coefficient of elasticity (c) and viscous damping coefficient (k), are usually
assumed and determined in such cases (see Fig. 6.1). Since values of these pa-
rameters influence strongly the so-called modal parameters of the system, an
experimental modal analysis is generally used to determine them. However,
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Figure 6.1. Commonly used model of EDE of a real system

even a simple static loading and unloading test carried out on the element
reveals a certain shortcoming of this model because the linear reaction func-
tion

F (x, v) = kv + cx (6.3)

does not describe the phenomenon of hysteresis.
As is well known, the simplest description of this system requires, apart

from a model of linear viscous damping, a model of dry friction. Therefore it
becomes necessary to use nonlinear modeling. Then the motion in the case
of single mass m would be described by the following equation

mẍ + F (?) = p(t). (6.4)

The force of reaction of an elasto-damping element (EDE), acting on mass
m̂ of the system investigated is described by unknown function F (?) (see
Fig. 6.2).
Therefore we shall now consider the problem of determining the class of

function F (?), which resolves itself to the determination of:
– the independent variables (i.e. what to put in place of question mark

“?” in function F (?)),
– the class (form) of function F (?),
– the values of the constant parameters of function F (?) (so-called para-

metric identification).
Let us notice that the assumption that function F (?) depends only on

velocity v and displacement x, i.e. F (?) ≡ F (x, v) can indeed be erroneous. It
is obvious that this assumption is erroneous for a system in which the EDE
consists of real springs connected as in Fig. 6.3 with a real damper. This can
be demonstrated through a careful analysis of the differential equations for
such a system (by reducing two equations to one having form (6.4)). However
when the EDE is made of an elasto-plastic material, the formulation of an
equation which would correspond exactly to (6.4) and the definition of a set
of independent variables in terms of function F (?) become problematic. In
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the latter case, i.e. the determination of a form of function F for a specified
set of independent variables, the procedure generally consists in the a priori
assumption of a specific class for this function. Most frequently the function
is assumed as separated into purely elastic part Fs(x) and purely dissipative
part Fd(v), i.e.

F (?) = F (x, v) = Fs(x) + Fd(v) (6.5)

where Fs(x) = cx, Fd(v) = kv are linear functions. This approach leads
further to considerable difficulties in the determination of constant parame-
ters of these functions if assumption (6.5) does not occur in the real system.
This is so because different methods (a free vibration damping decrement,
a harmonic-excitation frequency characteristic, static tests, etc.) used to de-
termine these parameters yield different evaluations of these parameters.
Therefore it becomes essential to develop various methods (methods based

on different criteria) of determining the constants of the models because the
scatter of results indicates to what degree our assumption concerning the class
of function F (?) is correct. Thus methods of identifying dynamical systems for
various types of dynamic excitations (e.g. random pulse excitation) should be
developed.
Now a brief review of solutions in this field, suitable for the modeling

of dynamical properties of elasto-damping elements of machines follows. The
aim is to provide a certain methodology for the identification and modeling
of machine elements subjected to cyclic dynamic excitations. If model of the
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function F is to be accurate both for dynamic excitations and static loads,
the identification criterion must include the information associated with the
two kinds of loads.
As is shown in [6.9], one of the ways of searching for the class of func-

tion F (?) consists in the application of an identification algorithm to an out-
put model with an a priori assumed, possibly complicated configuration and
strongly nonlinear dissipative-elastic elements followed by the verification of
a hypothesis that certain constant parameters within set D of this model are
equal to zero (see Fig. 6.4). This procedure, however, requires identification
algorithms for a wide range of nonlinear dynamical systems. A typical exam-
ple here is the method developed for a universal-configuration system with
so-called Reid spring (cf section 2.2). In this method, it is a priori assumed
that the EDE investigated works as a system whose complex configuration
is shown in Fig. 6.5. This system covers set D which contains six constant
parameters, i.e. h0, h1, k, c0,m, c. It is assumed that the system includes two
nonlinear elements described by the following functions

R1(v) = h0 Sgn v, R2(x, v) = cx + h1|x| Sgn v (6.6)

where function R1(v) describes the so-called dry friction and function R2(x, v)
is the so-called Reid spring (cf chapter 2).
Let us notice that identification carried out for this type of a model may

result in the following radical extreme cases (see [6.10]):
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1) parameters h0, h1 equal to zero and parameter c0 = ∞ – the EDE
works as a parallel-configuration linear system of the Kelvin type (Fig. 6.6a);
2) parameters h0, c, h1 equal to zero – the EDE works as a Maxwell-con-

figuration linear system (Fig. 6.6b);
3) parameters h0, h1 equal to zero – the EDE works as a universal-con-

figuration linear system of the standard type (Fig. 6.6c).
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(a) (b)
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Figure 6.6. Four basic types of simple models that the system in Fig. 6.5 covers:
(a) – parallel configuration, (b) – series configuration,
(c) – universal configuration, (d) – series with dry friction
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Figure 6.7. The identification algorithm for the model in Fig. 6.5 (acc. to [6.10])

Other cases are also possible, such as c = 0, h1 = 0 for which the model in
Fig. 6.5 reduces itself to the system in Fig. 6.6d. In each of the above cases,
the identification process should be repeated for a new set of parameters D,
using the algorithm described in section 3.3. This algorithm assumes that
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constants h0, c, h1 are determined through the suitable approximation of the
static hysteresis loop (cf Fig. 2.5) and the constants k, c0,m – by subjecting
the system to arbitrary periodic excitations.
Figure 6.7 shows a diagram of the identification algorithm for the EDE,

assuming that the model corresponds to the one shown in Fig. 6.5. It is worth
mentioning that this algorithm works also for any periodic excitations for
which the response of the system is any periodic function. Therefore when
a model obtained is to be verified, this solution can be applied to a wide
range of excitations.
Another method used for estimating reaction function F (?) is the one

described in section 3.4. It can be used, similarly as the previous method,
in a way described in Fig. 6.4. The main difference is that the output model
here is a system in which, besides purely elastic interactions Fs(x) and purely
damping ones Fd(v) (functions Fs(x) and Fd(v) can be of any shape), there
is mixed element xv whose significance for the considered system is specified
by coefficient κ (see Fig. 6.8). Let us notice that when the value of coefficient
κ is determinable, one can test the hypothesis that in the system elastic
interactions can be separated from purely dissipative ones, i.e. that function
F (x, v) can be written as follows

F (x, v) = Fs(x) + Fd(v). (6.7)

This method assumes that functions Fs(x) and Fd(v) are arbitrarily nonlinear
(the symmetry of dissipative function Fd(v) is odd, i.e. Fd(−v) = Fd(v)) and
they can be written as follows
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Fs(x) =
q∑

µ=1

cµvµ, Fd(v) = h Sgn v +
n∑

ν=1

kνv
ν (6.8)

(index ν takes only odd values!).
This method was derived on the basis of the following three identification

equations (cf section 3.4):
– the energy balance equation

hαS(v)
x +

n∑
ν=1

kναvν

x + καxv
x = αp

x, (6.9)

– the power balance equation

mαa
v +

q∑
µ=1

cµαxµ

v + καax
x = αp

v, (6.10)

– and the so-called auxiliary equation

mαax
x + hαS(v)x

x +
n∑

ν=1

kναvνx
x + καvx2

x = αpx
x , (6.11)

where αz
y (z(t), y(t) – signals of relevant responses and their functions) de-

note a field bounded by loops of relation z(y) for periodic excitations.
Since these equations are satisfied for any periodic excitations which gen-

erate a periodic response (impulse excitations of any form), they are essen-
tial for the process of identification (the verification of a model in different
operating conditions of a machine’s EDE). A diagram of an identification
algorithm for this method is shown in Fig. 6.9. Let us notice that the static
hysteresis loop in this case can be used to verify the results obtained. From
the point of view of the modeling of real systems, however, the fact that it
is possible to determine estimate κ̂ of coefficient κ which defines the share of
mixed element xv in the system is most important.
It is this value that decides whether this element can be neglected (in the

range of vibration) or not. Let us now discuss the problem of determining
the class of the dissipation function in parallel-configuration systems. If an
elasto-damping element can be described by a parallel-configuration system
(κ ≈ 0 or c0 = ∞), then the reaction force can be written by (6.7). In such
a case, the identification task reduces itself to the determination of dissipa-
tion function Fd(v). The relevant solutions are described in chapter 2. They
were constructed in a way similar to the one shown in Fig. 6.4. But the
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Dynamical experiment

p̂(t) – periodic excitation of any shape,
x̂(t), v̂(t), â(t) – displacement, velocity
and acceleration

α
z
y – field bounded by relation z(y) of
relevant signals z(t), y(t),
(e.g. αp

x – dynamical hysteresis loop)

?

Recording of signals:
x̂(t), v̂(t), â(t), p̂(t))

?

Determination of values:

α
S(v)
x ,α

vν

x ,α
xv
x ,α

p
x,α

a
v,

α
xµ

v ,α
ax
v ,α

p
v,α

ax
x ,

α
S(v)x
x ,α

vνx
x ,α

vx2

x ,α
px
x

?

Regression analysis:
acc. to eq. (6.9–6.11)

Results

m̂, ĥ, k̂ν , ĉµ, κ̂

�

Static experiment

- Comparison

?

Decision:

Good model Bad model

? ?

1) Change values n, q

2) Use other procedure
(for a different model assumed)

END

Figure 6.9. An identification algorithm for the model in Fig. 6.8 (acc. to [6.10])

choice of an output set of parameters D is much easier here since it exploits
a relationship between two variables. The shape of this relationship can be
estimated visually in a special plot.
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For example, assuming that the dissipative function is described by the
expression

Fd(v) = h Sgn v +
n∑

ν=1

kνv
ν (6.12)

where h, kν – constant unknown parameters and ν, n – any odd numbers,
the value of number n is not assumed a priori but on the basis of a re-
lation amplitude P of harmonic excitation as a function of the amplitude
of velocity in resonance (Vr). This relationship can be visualized in a finite
interval of variables P and Vr as a set of points on a plane (see chapter 2,
Figs. 2.32, 2.34, 2.39). This shape makes it much easier to determine number
n which describes the degree of polynomial (6.12). The method is applied
by calculating constants h, kν , on the basis of an optimal approximation of
experimentally determined relation P (Vr) (see section 2.4).
Having a rough form of reaction force F (?), now the main task is to de-

termine its constant parameters, i.e. their optimal values for a specified class
of dynamic excitations. This task is called parametric identification. It should
be performed for different dynamic excitations since only such a procedure
can verify fully the model class being constructed. However, methods which
are good for any dynamic excitation conditions can often be used in the
natural operating conditions of an investigated EDE. A sample solution here
is a method in which the energy balance equation and the power equation
are applied to systems for which it has been established preliminarily that
reaction function F (?) can be written in form (6.7).
Let us assume that as a result of static tests and the use of the har-

monic resonance excitation method it has been established that the form of
elasticity function Fs(x) and dissipation function Fd(v) is described by (6.8),
in which numbers q, n are already known. Now the task is to determine the
values of parameters kν , cµ, h again but for non-harmonic and non-resonant
dynamic excitations. By comparing the new values of these parame-
ters with the old ones it will be possible to state whether the model
can be used to describe the operation of the investigated EDE in
different excitation conditions or ought to be rejected because the
differences are unacceptable (so-called verification) (see [6.10]).
As was shown in chapter 4, the energy and power equations for par-

allel-configuration systems and functions Fs(x), Fd(v) of form (6.8) can be
written as follows

hE[|v|] +
n∑

ν=1

kνE[vν+1] = E[pv], (6.13)
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Dynamical experiment

?

Recording of signals:

p̂(t), v̂(t)

p̂(t) – harmonic excitation:

p̂(t) = 2P cosωt,

v̂(t) – time history of velocity,
v̂r(t) – resonance velocity,
2Vr – amplitude of resonance velocity,

2P – steady amplitude of excitation,

a0, aν – coefficients of power expansion

of relation P (Vr),
βν – constant numbers given in sect. 2.4

e.g. β1 = 1, β3 = 3, β5 = 10, β7 = 35
etc.

Change of ω at steady P to

determine resonance response

v̂r(t) ≈ 2Vr cosωrt

?

Determination of relation

P (Vr)

?

Approximation of relation

P (Vr) by power series:

P = a0 +

n∑

ν=1

aνV ν

r

?

Determination of constants:

a0, a1, a3, . . . , an

?

Calculation of parameters

h, k1, k3, . . . , kn

from formulas:

a0 =
2h

π
, aν = βνkν

(ν = 1, 2, . . . , n)

Figure 6.10. The algorithm for determining the class of the dissipative function
in the case of odd symmetry

mE[a2] +
q∑

µ=1

cµE[xµa] = E[pa], (6.14)

where symbols E[. . .] represent means of relevant signals (e.g. E[a2] – the
mean of an acceleration signal raised to the 2-nd power). It has been demon-
strated that these equations are satisfied for such dynamic excitations for
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-

Dynamical experiment

p̂(t) – measured excitation
v̂(t) – measured velocity

-t

6p(t)

-

6v(t)

t

Examples

?

Recording: p̂(t), v̂(t) for
various excitations p̂i(t)

?

Creation of signals:

|v̂i|, v̂ν+1

i
(t), p̂iv̂i(t)

and calculation of values:

Êi[|v|], Êi[v
ν+1], Êi[pv]

?

Formulation of equations

hÊi[|v|] +
n∑

ν=1

kνÊi[v
ν+1] =

= Êi[pv] + δi

?

Determination of optimal values

ĥ, k̂ν through minimization of∑
(δi)

2

ĥ, k̂ν

Figure 6.11. The way for determining the parameters of arbitrarily nonlinear
dissipation function in the case of any complex dynamical load (acc. to [6.10])

which the response of the system is steady. Let us notice that in the case of
real systems, this assumption is true practically for any periodic excitations
and also for random excitations with steady probability distribution. It is
quite easy to determine mean values E[. . .] of relevant signals experimentally
using multi-channel spectrum analyzers. It should be noticed that the identi-
fication testing of the dissipation function can be carried out independent of
the investigation of the restitutive function (see Figs. 6.11 and 6.12).
All procedures described in this book have been developed with an ap-

propriate software and tested on several practical applications. For example
these procedures have been used to identify influence of the persistent peri-
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-

Examples:
p(t)

a(t)

p̂(t) – measured excitation in finite time T

x̂(t) – measured displacement
â(t) – measured acceleration

?

Recording:p̂(t), x̂(t), â(t), for
series of various excitations p̂i(t)

Creation of signals:

â2

i , x̂
µ
i âi, p̂iâi

and calculation of values:

Êi[a
2], Êi[x

µa], Êi[pa]

?

?

Formulation of equations

mÊi[a
2] +

q∑

µ=1

cµÊi[x
µa] =

Êi[pa] + εi

Determination of optimal values

m̂, ĉµ through minimization of∑
(εi)

2

?

m̂, ĉµ

Figure 6.12. The way for determining the parameters of arbitrarily nonlinear
restitutive function in the case of any dynamical complex load (acc. to [1.10])
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ψ = ϕ1 − ϕ2

Figure 6.13. Scheme of a model of torsional vibration measurement
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Figure 6.14. The measuring stand for pipe torsional properties identification:
1 – computer with HPVEE software, 2 – HP-E 1473A spectral analyzer,

3 – PRODERA power amplifier, 4 – PRODERA shaker, 5 – PCB accelerometers,
6 – pipe tested

odic excitations on fluctuation of damping properties of some brass, copper
and aluminium pipes under torsional loads [6.9]. To achieve this aim the
proper measuring stand was created (see Fig. 6.14) in which the tested pipe
works as an EDE in a dwo-degrees-of-freedom system (Fig. 6.13).
Summing up, let us notice that by using suitable methods one can de-

termine the set of arguments of function F and its class (the degree
of nonlinearity). This function can be determined accurate to the
value of constant parameters for any dynamic excitation. In this
process, one can use the original procedures developed for strongly
nonlinear models. The presented methods allow one to verify models fully
also by using random loads.
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