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Preface

The description of technical, physical and economic processes requires,
on the basis of empirical data, the utilization of algorithmic procedures devel-
oped within many branches of sciences. They include theories of identification,
planning of experiments and dimensional analysis. The dimensional analysis,
relating to studies of mathematical models on the basis of a priori assump-
tions of their properties and also the properties of observables, remained on
the margin and practically even outside the sphere of interest of specialists
engaged in the creation of empirical models. This work is the result of at-
tempts at constructing algorithmic procedures and programming systems for
experiment designing and its data processing. Such systems cannot disregard
generally utilized requirements involving mathematical modelling in physics
and technology, i.e., invariance concerning a defined rotation, translation or
gauge groups and also the tensor homogeneity of a model.

These problems have been investigated independently by dimensional
analysis [19] and the theory of invariants [61]. In utilized mathematical pro-
cedures this would require the construction of algorithms in various languages
(various spaces). This inconvenience has been removed by the construction
of dimensional spaces, based on the theory of fiber bundles, proposed in this
work.

As a result we have presented consequently elaborated algorithmic proce-
dures to service empirical works intended to construct mathematical models
both for cases investigated in accordance with the traditional dimensional
analysis, the planning of experiments and the processing of obtained results
in which scalar variables are used, and – so far unconsidered models with
variables comprising tensors of a higher order than zero (Chapters 1, 2, 3, 4,
5 and 6).

Problems concerning the similarity and designing of models, as well as
the construction of falsification procedure of hypotheses relating to the com-
pleteness of lists of variables describing a process, have been examined in both
cases.

Chapter 6 occupies an intermediate position. It includes a solution of
the old problem of selection of dimensional bases present in every formulation
of the classical theorem-π. However, the proposed new metod (the universal
graph) is constructed entirely with the help of dimensional geometry related
to the classical idea of Drobot spaces. Many relatively simple examples depict
the way the universal graph works.

With the appearance of fractals an important class of mathematical tools
has become widely applied to modelling techniques. The second part of the
book (chapters 7, 8 and 9) is devoted to the special version of dimensional
analysis oriented onto models employing fractals and scaling dependences.
The particular, new model of fractal measurement has been elaborated as well
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as the new projective dimensional analysis. Due to specific form of equa-
tions, nonexisting in classical dimensional analysis, some new techniques are
proposed. Finally, Chapter 9 comprises exemplary applications of described
methods. Concordant with the interests of authors examples concern mainly
properties of materials as well as the structure and evolution of biological
systems.

Some sections of this book (Chapter 1 and parts of Chapter 2, 4 and
10) were published by World Scientific in 1990 under the tittle Dimensional
Analysis in the Identification of Mathematical Models. We express our thanks
to the World Scientific for the permission to use excerpts from the above
mentioned edition.

We express our sincere thanks to Mr Jan Rudzki for the English transla-
tion of this book.

Authors
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CHAPTER 1

DROBOT’S DIMENSIONAL SPACE

AND A CLASSICAL THEORY OF

MEASUREMENT

The construction of empirical mathematical models necessitates the intro-
duction of mathematical operations on results of observations. This inclines us
to treat measured quantities as elements of a set of a mathematical space. Both
the theory of systems and the identification theory treat observation results as
real numbers. This approach to measurement results has been established by
the classical theory of measurement although it practically solved merely the
problem of the construction of measurement scales, whereas the determination
of the additivity of measured quantities already caused some trouble. We shall
introduce the concept of dimensional space according to S. Drobot [19] because
it defines, in a sufficiently explicit fashion, operations on measurement results
or – more accurately – on the set of dimensional quantities interpreted as, for
instance, physical magnitudes.

1.1. DROBOT’S DIMENSIONAL SPACE [19]

To construct a consequent algebraic scheme of dimensional analysis Drobot
introduces the notion of dimensional space. It included such elements as di-
mensional quantities interpreted as quantities operated by quantitative theo-
ries of processes.

Definition 1.1. The algebraic system Π =
(

Π̂,�,
{

[a]
}

a∈R

)

will be called a

dimensional space if the following conditions are satisfied:
1. (Π̂,�) is an abelian group,
2. The powers

{

[a]
}

fulfill axioms of multiplication by a scalar for vector
spaces (written in the form of powers):

∀a, b ∈ R ∀X̂, Ŷ ∈ Π̂ X̂ [a+b] = X̂ [a] � X̂ [b],

(X̂ � Ŷ )[a] = X̂ [a] � Ŷ [a],

(X̂ [a])[b] = X̂ [ab],

X̂ [1] = X̂,
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3. Π̂0 = R+ ∈ Π̂
4. In the subset Π̂0 = R+ of space Π̂ the multiplication is identical with the
multiplication of real numbers (�/R = ” • ”)

5. The powers
{

[a]
}

a∈R
of elements of the subset Π̂0 are ordinary powers of

the numbers (X̂ [a]/R+ = Xa).

Henceforth, to simplify notation, we shall replace �,
{

[a]
}

with •, a also

in the set of elements that are not elements of the subset Π̂0.

Definition 1.2. The elements Ẑ1, Ẑ2, . . . , Ẑm ∈ Π̂ are called dimensionally
dependent if the numbers a1, a2, . . . , am ∈ R not all equal to zero exist and are
such that

m
∏

i=1

Ẑai

i = α, α ∈ Π̂0 (1.1)

If this condition does not occur (when (1.1) is fulfilled only for a1 = a2 = . . . =

am = 0 and α = 1) we say that the elements Ẑ1, Ẑ2, . . . , Ẑm are dimensionally
independent.

Definition 1.3. We say that the dimensional space Π contains n units (de-
noted by the symbol Πn) if there exist n dimensionally independent elements
in it and every n + 1 system of elements is dimensionally dependent. We
shall also describe every system of dimensionally independent n elements in
the dimensional space Πn as the base of this space.

Let Ê1, Ê2, . . . , Ên ∈ Π̂n be the system of units of dimensional space Πn.
The element Ẑ ∈ Π̂n may then be presented consistent with definitions 1.2
and 1.3, in the form:

Ẑ = Z

n
∏

k=1

Êzk

k ; Z ∈ Π̂0, zk ∈ R. (1.2)

Dimensional space is not included in most works dealing with dimensional
analysis [11], [60]. Measurement is treated as explicit mapping on R; if Π̂ is

the set of quantities of interest to us, the mapping referred to f : Π̂ −→ R+.
It is not easy to decide, on the basis of Definition 1.2, whether the system

of quantities Ẑ1, Ẑ2, . . . , Ẑm ∈ Π̂n is dimensionally dependent or independent.
We shall present a method of solving this problem for the dimensional space
Πn spanned by the system of units Ê1, Ê2, . . . , Ên.

Theorem 1.1. Dimensional quantities Ẑ1, Ẑ2, . . . , Ẑm expressed in the sys-
tem of units Ê1, Ê2, . . . , Ên ∈ Π̂n by formulas

Ẑi = Zi

n
∏

k=1

Êzik

k , Zi ∈ Π̂0, zik ∈ R, i = 1, 2, . . . ,m; (1.3)



1.1. Drobot’s dimensional space[19] 3

can be treated as dimensionally independent if and only if the matrix made up
from exponents zik, i = 1, 2, . . . ,m, k = 1, 2, . . . , n appearing in formulas
(1.3) is of the m order.

Proof of this theorem may be found in work [19] (it is also known in linear
algebra).

In the classical theory of measurement the possibility of measurements
by different observers has been taken under consideration. It was stipulated
that both descriptions of this observed system were to be univocal (cf. for
instance, the ”theory of uniqueness” cited by Berka [8] after Morgenstern and
von Neuman [67]); in a dimensional analysis this corresponds to a situation
in which two observers use two different systems of units (bases) of the same
dimensional space. Let us examine an example when two systems of units are
known, namely:

Ê1, Ê2, . . . , Ên and ′Ê1,
′Ê2, . . . ,

′Ên ∈ Π̂n.

Using the formulas (1.3) we can express the units Êi, i = 1, 2, . . . , n,

univocally in the system of units ′Êk, k = 1, 2, . . . , n and vice versa. We shall
have

Êi = Ei

n
∏

k=1

′Êeik

k , eik ∈ R; Ei ∈ Π̂0, i = 1, 2, . . . , n; (1.4)

and

′Êk = ′Ek

n
∏

i=1

Ê
e′

ik

i e′ik ∈ R; ′Ek ∈ Π̂0 k = 1, 2, . . . , n. (1.5)

The matrices of exponents {eik} and {e′ik} are of the n order, namely
det{eik} 6= 0 and det{e′ik} 6= 0. Every element of this space can be expressed

univocally utilizing formula (1.2) both in base Êi and ′Êk, that is

Ẑ = Z

n
∏

i=1

Êzi

i , Z ∈ Π̂0, zi ∈ R, (1.6)

Ẑ = Z ′

n
∏

k=1

′Ê
z′

k

k , Z ′ ∈ Π̂0, z′k ∈ R. (1.7)

If we know the dimensional quantity Ẑ ∈ Π̂n in the base Êi ∈ Π̂n

and we know its numerical measure Z and exponents zi in relation to base
Ê1, Ê2, . . . , Ên we may – at the transformation of bases assigned by formula
(1.4) – find Z ′ and the exponents z′k of the dimensional quantity Ẑ in a new

system of units ′Ê1,
′Ê2, . . . ,

′Ên, namely:

Ẑ = Z
n
∏

i=1

(

Ei

n
∏

k=1

′Êeik

k

)zi

= Z
n
∏

i=1

Ezi

i

n
∏

k=1

′Ê
∑n

i=1
eikzi

k . (1.8)
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Comparing formulas (1.8) with (1.7) it is obvious that

Z ′ = Z

n
∏

i=1

Ezi

i , z′k =

n
∑

i=1

eikzi. (1.9)

The formulas (1.9) provide, therefore, a method of transformation in the de-

scription of magnitude Ẑ from one system of units into another.
In his work [19] Drobot defined the so-called dimensional transformation

which in space Πn spanned over a fixed system of units Ê1, Ê2, . . . , Ên assign
to the element Ẑ ∈ Π̂n a unique different element Ẑ ′ ∈ Π̂n.

Definition 1.4. The transformation Ẑ ′ = Θ(Ẑ) (Θ : Π̂n −→ Π̂n) such that

for Ẑ = Z
∏n

i=1 Êzi

i and Ẑ ′ = Z ′
∏n

i=1
′Ê

z′

i

i ∈ Π̂n, Z ′, z′i are linked with Z
and zi via dependencies (1.9) will be called a dimensional transformation.

The dimensional transformation satisfies the following conditions:
i) Θ(Ẑ1, Ẑ2) = Θ(Ẑ1)Θ(Ẑ2); Ẑ1, Ẑ2 ∈ Π̂n,

ii) Θ(Ẑa) =
{

Θ(Ẑ)
}a

; Ẑ ∈ Π̂n, a ∈ R,

iii) is one to one

iv) Θ(α) = α, α ∈ Π̂0.

Definition 1.5. The two quantities X̂, Ŷ ∈ Π̂ have the same dimension if
X̂Ŷ −1 ∈ Π̂0 i.e., it is a dimensionless quantity.

Using symbols introduced by Maxwell, we shall denote this fact by writing

[X̂ ] = [Ŷ ] ⊂ Π̂.

The relation described in Definition 1.4 divides elements of dimensional space
into disconnected classes, so that the same classes encompasses only elements
of the same dimensions, e.g. [5 m] = [3 km] = [2 inches] = . . ..

The algebraic structure of space Π is such that group R+ is a normal
subgroup of (Π̂,�), consequently Π as group is isomorphic with the product:

Π̂ = Π̂/R+ × R+.

Summation may be used in dimensional space only for elements of the
same dimension. Thus:

αX̂ ± βX̂ = (α ± β)X̂ (1.10)

where α, β ∈ R+, X̂ ∈ Π̂ represent elements of the examined dimensional class.
However, consistent with Definition 1.1 in the case of the real number γ < 0
the product γ • X̂ 6∈ Π̂. Intuitively, the construction of space would be clear if
the whole R space were to be introduced into space Π̂ as a subset, we would
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have to interpret, e.g., the quantity (−3m)1/2, but in fact this quantity is also

not an element of the set Π̂. This is an essential drawback of the space here
discussed from the aspect of use, for instance, in physics (where we assume
rotations and translations of co-ordinate systems).

The limit of a sequence
{

αnX̂
}

, where {αn} is the numerical sequence,

is perceived just like the sum (1.10), namely:

lim
n→∞

(

αnX̂
)

=
(

lim
n→∞

αn

)

X̂. (1.11)

It should also be noted that (1.10), (1.11) and Definition 1.5 show that

[

dŶ
dX̂

]

=
[

Ŷ X̂−1
]

,

[

∫

Ŷ dX̂
]

=
[

Ŷ X̂
]

.

(1.12)

The class of dimensionally homogeneous and invariant functions (see Def-
inition ??) is closed under differentiation but open with respect to integration.
Therefore (1.12) holds if the both sides of equations are properly defined.

1.2. PROBLEMS OF THE CLASSICAL THEORY OF
MEASUREMENT

The classical theory of measurement (cf. Campbell [3], [8]) refers to a
mapping of the empirical relational system into a numerical relational system.
Speaking of an empirical relational system we have in mind a certain empirical
set, the relation determining the linear order and the empirical operation ⊕
or � on the elements of this set. By a numerical system we understand, e.g.,
{R+,≤,+}, {R+,≤, •}. We introduce here the condition of correspondence
between the empirical and the numerical system based on definitions of a
similar order quoted here after Kuratowski [39].

Definition 1.6. We say that the relation ≤ subordinating set A and the rela-
tion ≤∗ subordinating set A∗ determine similar arrangements (or that A and
A∗ are isomorphic) if there exists a one-to-one mapping f of the set A into
A∗ fulfilling the equivalence

(x ≤ y) = (f(x) ≤∗ f(y)),

that is, if the element x precedes the element y in set A then, and only then,
when the element f(x) precedes f(y) in set A∗. The mapping f is, therefore,
simultaneously defined as f : A −→ A∗.
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It can easily be proven that the similarity relation introduced by Definition
1.6 is an equivalent relation. If the mapping f is one-to-one and transforms
the empirical set into a numerical set then (it was done likewise by Rosen
[51] on the basis of a well founded notion of length measurement) we shall
call it a ”meter”. In fact, the principal problem of the classical theory of
measurement involves a logical reconstruction of the measurement operation
and an examination of properties of measurement scales used for this purpose.
But attempts have also been made at introducing on this basis a division
of measured quantities into extensive (additive) and intensive (nonadditive)
quantities.

If an empirical set has to be put in order we shall introduce a binary re-
lation. This introduces (according to Rosen [51]) a one-to one transformation
referred to in Definition 1.6. Such a transformation assigns some numerical
values to a certain individual characteristic of elements of the investigated
empirical set. The order relation is introduced for that reason, using the lan-
guage of dimensional space, on elements belonging to the same dimensional
class ( cf. Definition 1.5). Consequently, the measurement theory can solve
the problem: will two objects measured with a meter, one being, for instance,
two meters and the other three meters long, measure five meters when linked
together (if the measurement scale is properly constructed) ? But the problem
whether the operation of composition is sensible in an explicit empirical situ-
ation, remains unsolved. For that reason, we must differentiate two separate
aspects of the here discussed notion of additivity, namely, the construction of
the measurement scale which ensures an identical measurement result of the
two composed ”objects” with the sum of measurement results made separately
on these two ”objects” – differentiated from the sensibleness of the operation
of putting objects together. The last problem cannot be solved on the basis
of measurement theories, we may assume that it is insoluble on the basis of
any formal theory involving measurement.

As we know, the additivity problem involving the construction of mea-
surement scales has been solved in the classical measurement theory [8] by
the introduction of so-called linear interval scales and ratio scales. They were
somehow differently interpreted by von Neuman and Morgenstern [67] who
did not introduce compositions into the empirical system. Two mappings
were considered:

f : u −→ ρ, u ∈ U, ρ ∈ R+, ρ = f(u),
f ′ : u −→ ρ′, u ∈ U, ρ′ ∈ R+, ρ′ = f ′(u).

(1.13)

To fulfill the postulate of uniqueness the mapping (1.13) must be such
that if u > w, u,w ∈ U then:

f(u) > f(w) and f ′(u) > f ′(w). (1.14)

We must also describe the transformation:
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ρ ⇀↽ ρ′ which is one to one and can be written in the form:

ρ′ = φ(ρ). (1.15)

Let us take the pair u,w ∈ U while u > w (each pair in the set U
satisfies one of the relations u > w, u < w or u = w) and the mapping
f, f(u) = ρ, f(w) = σ, then obviously ρ > σ. Let us introduce on the
numbers ρ and σ the operation:

αρ + (1 − α)σ (1.16)

in which α ∈ R+ is from the interval (0 < α < 1).
To maintain condition (1.14) and operation (1.16) the transformation φ

should keep the following properties:

φ(ρ) > φ(σ),
φ{αρ + (1 − α)σ} = αφ(ρ) + (1 − α)φ(σ).

(1.17)

It has been proved (in [67] with certain assumptions unessential for our con-
siderations) that the transformation φ (1.15) fulfilling the properties (1.17) is
a linear transformation, i.e.,

ρ′ = φ(ρ) = a0ρ + a1. (1.18)

It should be noted that the transformation φ, just like the transformation Θ
(cf. Definition 1.4) fulfills the condition iv) Θ(α) = α, φ(α) = α, α ∈ Π̂0.
The numbers ρ and σ are the numerical measures. As regards a1 6= 0 we have
to do with so-called interval scales and, as regards a1 = 0 with ratio scales.

If we treat the measurement result (with the aid of a ratio scale) as an
element of space Π, denote the measurement results (1.13) respectively ρ̂, σ̂,
and produce their quotient, i.e.,

ρ̂

σ̂
= β,

it becomes evident that on the strength of Definition 1.5 β ∈ Π̂0 and, of course

ρ̂

σ̂
=

ρ̂′

σ̂′
= β. (1.19)

The property (1.19) will be maintained at measurements involving the
linear-interval scale when ρ̂ and σ̂ denote measurement results of increments
of a certain quantity. As regards quantitative theories of physics views have
often been expressed not to use manmade scales of descriptions. We can
choose from set U (corresponding in the dimensional space Π to the class of
elements of the same dimension) a certain element (standard) and treat it as a
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standard ”meter”, measurement results will then be direct equivalents of the
number β. This well known idea has been used in dimensional analyses for
the construction of quantitative models of processes.

Returning to the subject, it should be noted that von Neuman and Mor-
genstern achieved ”additivity” in the sense of scale property without postulat-
ing the composition operation (concatenation in the theory of measurement)
in the empirical set (operation (1.16) has been introduced for the set of map-
pings). Nonetheless, we have found that the additivity problem, taken broadly,
cannot be solved in the measurement theory and the question arises how to
solve it.

Quantities measured in formalized (e.g., physical) theories are treated as
dimensional quantities (space Π) and, at the same time, as tensors of a corre-
sponding valence. Consequently, the additivity problem should be examined
also formally not only on the ground of a corresponding mathematical model
but also on the basis of a certain interpretation context of a given theory.

Let us formulate, after work [30] three postulates describing the additivity
of an examined quantity which should be fulfilled simultaneously, namely:
1. The so-called dimensional quantity which is an element of space Π is the

mathematical model of measured magnitudes. Formally we may allow
there an addition and substraction operation on quantities of the same
dimension (cf. Formula (1.10)). Is this a sufficient condition ? If this were
so then, for example, a work defined as the scalar product of force × path
and torque defined as the vector product of a force × arm would be treated
as additive quantities. As we know, these two quantities have the same
dimension, i.e., N̂ · m̂ (Newton meter).

2. In respective mathematical models each quantity is a tensor of a specific
valence. In physics there is an obligatory condition of the so-called tensor
homogeneity. It requires each component of the sum to be a tensor of
the same valence. It prohibits an addition of the scalar and the tensor
(i.e., work and moment). It should be noted that both the theory of
measurement and the model of dimensional space, according to [19], deal
only with scalar quantities.

3. The examined quantity may be recognized as additive when it satisfies
condition 1 and 2, moreover, when the interpretation contents of the theory
indicates that the addition and substraction operation is sensible.
To elucidate this problem let us quote an example used by both Campbell

[13] and Berka [8] involving the connection of resistances in direct current

circuits. There is the resistance R̂ = R̂1 + R̂2, in a series connection, and

R̂ = R̂1R̂2

R̂1+R̂2

for a parallel connection. If resistances are linked then postulates

1 and 2 are fulfilled. However, the formulas:
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R̂ = R̂1 + R̂2,

R̂ =
R̂1R̂2

R̂1 + R̂2

,
(1.20)

have been obtained after required transformations from a summing of the
voltage in the first case and of currents – in the second case. The sensibleness
of this summing results from interpretation postulates of the relevant theory
and is compatible with postulate 3. It is easy to see that formal operation
of addition occurs in both formulas (1.20). In calculations its admissibility is
decided by postulates 1 and 2. Later we shall discuss the possibility of reducing
postulates 1 and 2 to a single one after the enhancement of the dimensional
space.

According to Berka the numerical system, e.g., {R+,≤,+} is indispens-
able for a formal description of the system. This view may or may not be
correct. In reality, the ”numerical system” thus understood describes mea-
surement results in one specific coset and even if the operation ⊕ or � were
sensible there, it would not solve the possibility of introducing these opera-
tions to the construction of equations describing the state of a system because
many cosets or (to use Berka‘s language) ”numerical systems” must be used
to describe this system.

The measurement theory does not define the relation between ”objects”
of various cosets (dimensional classes) and operations (e.g., composition) on
various objects. These difficulties will not appear if tasks of the measurement
theory are reduced to a correct construction of measurement scales, nor is
it necessary to examine different specific empirical sets – this view has been
expressed by von Neuman and Morgenstern [67]. The necessity to introduce
operations on elements of various cosets occurs only when an attempt is made
at creating a formal description of a system’s behavior where the correspon-
dence with the ”empirical system” is much more complicated than the one
referred to in the theory of measurement. In the description of systems many
”empirical objects”are defined by constitutive rules (rules of correspondence
in the methodology of science specifying theoretical notions), referring not
only to empirical actions but also to mathematics, this concerns the notion of
force, moment, energy, etc. The classical theory of measurement also speaks of
a division of measurements into so-called fundamental and derivative measure-
ments and, consequently, into fundamental and derivative quantities. This has
led to essential complications involving definitions indicated, among others, by
Popper [47], who referred to a vicious circle of operative definitions. We sense
intuitively that quantities used to define all remaining (magnitudes, terms, no-
tions) appearing in the descriptions of a process (system) relate to the notion
of basic quantities. In formal models, for instance in Drobot‘s dimensional
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space, there appears an explicit term ”base”of dimensional space. Just as in
linear spaces and in Drobot’s space a base can be usually distinguished in
many ways. Practically, this also concerns physical theories unless a certain
agreement supported by a rule ( e.g., the S.I. system) limiting the selection of
a base is accepted.

In dimensional space we may select out of s elements Ẑl ∈ Π̂n, l =
1, 2, . . . , s, s ≥ n an m element base m ≤ n, usually in many ways. Let
us assume that the elements Ẑ1, Ẑ2, . . . , Ẑm create a base (cf. Definition 1.2)

and we cannot select an m+1 element base out of elements Ẑl, l = 1, 2, . . . , s.
Then, the remaining quantities Ẑl on the strength on Definition 1.2 and 1.3:

Ẑm+j = φj

m
∏

i=1

Ẑ
aji

i , aji ∈ R, φj ∈ Π̂0, j = 1, 2, . . . , s − m. (1.21)

Consequently, the quantities Ẑi fulfill in formulas (1.21) the function of

basic magnitudes which help to ”define” the derivative magnitude Ẑm+j .
In the description of systems we endeavor to attain a mathematical model

invariant as regards measurement scales invented by man. This indicates at-
tempts to measure variables describing the state of a system by some kind of
internal measure – characteristic of the system (see the discussion concerning
this problem, e.g., in work [72]). This experience is closely connected with the
solving of partial differential equations. In astrophysics, for instance, scientists
often introduce a certain individuated mass, length and time (e.g., the mass
of a planet, etc.), changing (what is easy to show) original equations in this
way.

Let us assume that we describe a system the state of which is univocally
specified by the variables Ẑ, Ẑ1, Ẑ2, . . . , Ẑs ∈ Π̂n. The equivalence relation
introduced by Definition 1.5 produces in set Π̂n a division into disconnected
subsets Π̂n/R+. Let us suppose that in the subset of a [Ẑp+1] dimension there

exist at least two elements: Ẑp+1 and Ẑp ([Ẑp+1] = [Ẑp]). The element Ẑp+1

can be treated as a measurement unit ”meter”, then:

Ẑp = αẐp+1. (1.22)

It is easy to show that α ∈ Π̂0. The result of the measurement by the
Ẑp+1 ”meter” will be described as f(Ẑp) = α consistent with (1.22)

α =
Ẑp

Ẑp+1

(1.23)

because [Ẑp+1] = [Ẑp], so α ∈ Π̂0.

However, both the ”meter” Ẑp+1 and the quantity Ẑp can be written in

the system of units Êk and ′Êi ∈ Π̂n (cf. formulas (1.7) and (1.8)).
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Having inserted into (1.22) Ẑp and Ẑp+1 recorded in the system of units Êk

we get α = Ẑp/Ẑp+1; when Ẑp and Ẑp+1 are written in turn in the ′Êi system

and the formula (1.8) is taken into account we again obtain α = Ẑ ′

p/Ẑ
′

p+1 we
have shown here, by the way, that the previously recorded formula (1.19) is
correct. But what should be done if only one element appears in the class
of the Ẑp dimension? There are two possibilities compatible with the two
concepts of the ”meter” constructions, i.e.:
1. The construction of a ”meter” on a base selected among quantities describ-

ing the state of a system, that is the quantities Ẑ, Ẑ1, Ẑ2, . . . , Ẑs.
2. The adding of the quantity Ẑs+1 ([Ẑs+1] = [Ẑp]) to the set Ẑ, Ẑ1, Ẑ2, . . . , Ẑs

i.e., the ”meter” for the quantity Ẑp. This is essential for a mathematical
description, a new variable appears in it, the mathematical model will
differ therefore, from the model in case 1. If there are no essential physical
reasons to distinguish variable Ẑs+1 in the description of the state of a
system, the possibility of using this procedure must be rejected.
It suffices to construct a ”meter” in accordance with formula (1.21) for

magnitude Ẑp. It is invariant in relation to possible measurement unit systems
because a ”meter”:

Ẑs+1 = 1

m
∏

i=1

Ẑ
as+1,i

i (1.24)

and Ẑp = αẐs+1 (f(Ẑp) = α), and more explicit:

α =
Ẑp

∏m
i=1 Ẑ

as+1,i

i

, α ∈ Π̂0. (1.25)

It is easy to check that α does not depend on the accepted system of
units. In this case, the α value can depend only on the selection of the base
(this problem will be resumed in Chapter ??).

We wish to indicate, moreover, that both the change of the system of
units in the description of dimensional quantities (transformation Θ) and a
change of the base (in the formal sense these two procedures are identical)
satisfy condition (1.18) imposed on the transformation (1.15) in the theory of

measurements. Let us measure, therefore, the dimensional quantity Ẑ with a
”meter”= 1

∏n
k=1 Êzk

k , we shall obtain f(Ẑ) = Z (cf formula (1.6)) and with

an ”inch”= 1
∏n

i=1
′Êzi

i , where
[

1
∏n

k=1 Êzk

k

]

=
[

1
∏n

i=1
′Êzi

i

]

we shall have
∗

f (Ẑ) = Z ′. We know that Z and Z ′ are linked with the dependence (1.9) (cf.
Definition 1.4). The transformation (1.15) should guarantee that

Z ′ = φ(Z) = a0Z (1.26)
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for the ratio scale (and also for interval scales if we interpret Z as an incre-
ment). Calculating from (1.26) a0 and considering (1.9) we get:

a0 =
Z ′

Z
=

n
∏

i=1

Ezi

i (1.27)

In this case, the constant a0 of the linear transformation depends nonlin-
early on the rescaling of the system of units, but it is constant and uniform
for each of the ”new meter”=

∏n
i=1 Ezi

i =”inch”.


