
Computers’ arthmetics
wer. 10 z drobnymi modyfikacjami!

Wojciech Myszka

2023-10-16 18:05:52 +0200

Binary numeral system

The binary numeral systems is rather old:
▶ India — 5–2 BC
▶ in the 11th century in China, arranging the I Ching (Yijing) sets of hexagrams

with, yin as 0, yang as 1 from 0 to 63. I Ching also known as Classic of Changes or
Book of Changes is one of the oldest of the Chinese classic texts. The book
contains divination system, and is still used for this purpose. The text is now an
important part of the Chinese culture.

▶ Gottfried Leibniz describe it in 1679. See, for example, http://books.google.
pl/books?id=Fuk8AAAAcAAJ&printsec=frontcover#v=onepage&q&f=false
(in French!)

http://books.google.pl/books?id=Fuk8AAAAcAAJ&printsec=frontcover#v=onepage&q&f=false
http://books.google.pl/books?id=Fuk8AAAAcAAJ&printsec=frontcover#v=onepage&q&f=false

I Ching hexagrams

Binary system

The binary system is a positional, base 2 counting system.
1. Two digits: 0 and 1
2. In the decimal system there are ten digits (figures): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
3. In the hexadecimal system (base 16 system) there are 16 digits: 0, 1, 2, 3, 4, 5 6,

7, 8, 9, A, B, C, D, E, F
Examples:

dec bin hex
10 1010 A

100 1100100 64
123.75 1111011.11 7B.C

Why hexadecimal system is important?

▶ Each BInary digiT is called a bit (abbreviation small letter “b”).
▶ Eight bits is called a byte (abbreviation big letter “B”).
▶ Computers usually use even multiples of bytes to store numbers (two, four or

eight, sometimes sixteen).
▶ Each hex (hexadecimal in short) digit is four bits, so a byte is two hexadecimal

digits.
▶ It is relatively easy to memorize the binary appearance of all hexadecimal digits ...

“Big” numerals I

In the SI system we are using prefixes to indicate decadic multiplay or fraction
▶ kilo (103), mega (106), giga (109),. . . “big numbers”
▶ mili (10−3), micro (10−6), nano (10−9),. . . “small numbers”

Because 210 is 1024 we (I mean computer scientists) start to use the prefix “kilo” in
meaning 1024 bytes or 1 “kilo-byte”).
In consequence:
▶ mega-byte 1024 × 1024
▶ giga-byte 1024 × 1024 × 1024

This is not correct!

“Big” numerals II

To standardize prefixes IEC 60027-2:1998 standard was developed:
kibi Ki 210

mebi Mi 220

gibi Gi 230

tebi Ti 240

pebi Pi 250

eksbi Ei 260

zebi Zi 270

jobi Yi 280

Conversions
Decimal to binary

Integers:
The number is divided by two, and we note the result on the left and reminder on the
right of the vertical line:
10

5 0
2 1
1 0
0 1

Reminders (figures on the right), read from bottom to top gives binary value of the
converted number.

Conversions
Decimal to binary

Integers:
The number is divided by two, and we note the result on the left and reminder on the
right of the vertical line:
10
5 0

2 1
1 0
0 1

Reminders (figures on the right), read from bottom to top gives binary value of the
converted number.

Conversions
Decimal to binary

Integers:
The number is divided by two, and we note the result on the left and reminder on the
right of the vertical line:
10
5 0
2 1

1 0
0 1

Reminders (figures on the right), read from bottom to top gives binary value of the
converted number.

Conversions
Decimal to binary

Integers:
The number is divided by two, and we note the result on the left and reminder on the
right of the vertical line:
10
5 0
2 1
1 0

0 1
Reminders (figures on the right), read from bottom to top gives binary value of the
converted number.

Conversions
Decimal to binary

Integers:
The number is divided by two, and we note the result on the left and reminder on the
right of the vertical line:
10
5 0
2 1
1 0
0 1

Reminders (figures on the right), read from bottom to top gives binary value of the
converted number.

Conversions
Decimal to binary

Integers:
The number is divided by two, and we note the result on the left and reminder on the
right of the vertical line:
10
5 0
2 1
1 0
0 1

Reminders (figures on the right), read from bottom to top gives binary value of the
converted number.

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33

0 .66
1 .32
0 .64
1 .28
0 .56
1 .12
0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66

1 .32
0 .64
1 .28
0 .56
1 .12
0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32

0 .64
1 .28
0 .56
1 .12
0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64

1 .28
0 .56
1 .12
0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28

0 .56
1 .12
0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56

1 .12
0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56
1 .12

0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56
1 .12
0 .24

0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56
1 .12
0 .24
0 .48

0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56
1 .12
0 .24
0 .48
0 .96

1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56
1 .12
0 .24
0 .48
0 .96
1 .92

1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56
1 .12
0 .24
0 .48
0 .96
1 .92
1 .84

1 .68
0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56
1 .12
0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Decimal to binary

Fractions: The fraction part is multiplied by two, and the integer part (0 or 1) is noted on the left side
of vertical line (integer part is removed for the next calculation)

.33
0 .66
1 .32
0 .64
1 .28
0 .56
1 .12
0 .24
0 .48
0 .96
1 .92
1 .84
1 .68

0.010101000111(2)=0.329833984375(10)

Conversions
Binary to decimal

Homework!

Processor
Logical operations (Boole’s algebra)

Logical AND Y = A
⋂

B
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Logical OR Y = A
⋃

B
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Exclusive OR Y = A
⊕

B
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Processor
Logical operations (Boole’s algebra)

Logical AND Y = A
⋂

B
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Logical OR Y = A
⋃

B
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Exclusive OR Y = A
⊕

B
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Processor
Logical operations (Boole’s algebra)

Logical AND Y = A
⋂

B
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Logical OR Y = A
⋃

B
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Exclusive OR Y = A
⊕

B
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Processor
Logical operations (Boole’s algebra)

Logical AND Y = A
⋂

B
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Logical OR Y = A
⋃

B
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Exclusive OR Y = A
⊕

B
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Logical Operations
Logical AND

A B

AND 0 1
0 0 0
1 0 1

A ∩ B

Logical operations
Logical OR

A

B

OR 0 1
0 0 1
1 1 1

A ∪ B

Logical operations
XOR

XOR 0 1
0 0 1
1 1 0

(Ā ∩ B) ∪ (A ∩ B̄)

Relay

Relay

Relay

Vacuum tubes (valves)
Diode

Vacuum tubes (valves)
Triode

Glass Envelope

Plate (anode)

Filament (cathode)

Grid

Binary arithmetic operations

1. Addition:
▶ 0 + 0 = 0
▶ 0 + 1 = 1
▶ 1 + 0 = 1
▶ 1 + 1 = 10

2. Multiplication:
▶ 0 ∗ 0 = 0
▶ 0 ∗ 1 = 0
▶ 1 ∗ 0 = 0
▶ 1 ∗ 1 = 1

Binary arithmetic operations

1. Addition:
▶ 0 + 0 = 0
▶ 0 + 1 = 1
▶ 1 + 0 = 1
▶ 1 + 1 = 10

2. Multiplication:
▶ 0 ∗ 0 = 0
▶ 0 ∗ 1 = 0
▶ 1 ∗ 0 = 0
▶ 1 ∗ 1 = 1

Processor
Addition

1. “Half-Adder”
2. Only two bits (Y = X1 + X2)
3. Carry (Cout)
4. “Truth table”

X1 X2 Y Cout

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Y = X1 ⊕ X2

Cout = X1 ∩ X2

Processor
Addition: Full Adder

Cin X1 X2 Y Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Y = Cin ⊕ (X1 ⊕ X2)

Cout = (X1 ∩ X2) ∪ (Cin ∩ (X1 ⊕ X2))

Logical operations
XOR application

Character Cursor Result

Logical operations
XOR application

Character Cursor Result
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Logical operations
XOR application

Character Cursor Result
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1

Logical operations
XOR application

Character Cursor Result
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1

Logical operations
XOR application

Character Cursor Result
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 0

Logical operations
XOR application

Character Cursor Result
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 0 1

Logical operations
XOR application

Character Cursor Result
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 0 1 1

Logical operations
XOR application

Character Cursor Result
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 0 1 1

Logical operations
XOR application

Character Cursor Result
0 0 1 0 0
0 0 1 0 0
1 1 1 1 1
0 0 1 0 0
0 0 1 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 0 1 1
1 1 0 1 1
0 0 0 0 0
1 1 0 1 1
1 1 0 1 1

Logical operations
XOR application

Character Cursor Result

XOR — Patent nonsense

Method for dynamically viewing image elements stored in a random access
Patent number: 4197590
Filing date: Jan 19, 1978
Issue date: Apr 8, 1980
Inventors: Josef S. Sukonick, Greg J. Tilden
Assignees: NuGraphics, Inc.
Primary Examiner: Thomas M. Heckler

http://www.google.com/patents?vid=USPAT4197590

Binary numbers

▶ Each binary digit is bit: BInary digiT

▶ Eight bits is byte. In byte:

▶ 00000000 to 0 (zero)
▶ 11111111 to 255 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =

28 − 1

▶ Word (Computer jargon) is group of bytes

▶ 16 bits architecture: 2
▶ 32 bits architecture: 4
▶ 64 bits architecture: 8

Binary numbers

▶ Each binary digit is bit: BInary digiT
▶ Eight bits is byte. In byte:

▶ 00000000 to 0 (zero)
▶ 11111111 to 255 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =

28 − 1
▶ Word (Computer jargon) is group of bytes

▶ 16 bits architecture: 2
▶ 32 bits architecture: 4
▶ 64 bits architecture: 8

Binary numbers

▶ Each binary digit is bit: BInary digiT
▶ Eight bits is byte. In byte:

▶ 00000000 to 0 (zero)

▶ 11111111 to 255 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =
28 − 1

▶ Word (Computer jargon) is group of bytes

▶ 16 bits architecture: 2
▶ 32 bits architecture: 4
▶ 64 bits architecture: 8

Binary numbers

▶ Each binary digit is bit: BInary digiT
▶ Eight bits is byte. In byte:

▶ 00000000 to 0 (zero)
▶ 11111111 to 255 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =

28 − 1

▶ Word (Computer jargon) is group of bytes

▶ 16 bits architecture: 2
▶ 32 bits architecture: 4
▶ 64 bits architecture: 8

Binary numbers

▶ Each binary digit is bit: BInary digiT
▶ Eight bits is byte. In byte:

▶ 00000000 to 0 (zero)
▶ 11111111 to 255 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =

28 − 1
▶ Word (Computer jargon) is group of bytes

▶ 16 bits architecture: 2
▶ 32 bits architecture: 4
▶ 64 bits architecture: 8

Binary numbers

▶ Each binary digit is bit: BInary digiT
▶ Eight bits is byte. In byte:

▶ 00000000 to 0 (zero)
▶ 11111111 to 255 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =

28 − 1
▶ Word (Computer jargon) is group of bytes

▶ 16 bits architecture: 2

▶ 32 bits architecture: 4
▶ 64 bits architecture: 8

Binary numbers

▶ Each binary digit is bit: BInary digiT
▶ Eight bits is byte. In byte:

▶ 00000000 to 0 (zero)
▶ 11111111 to 255 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =

28 − 1
▶ Word (Computer jargon) is group of bytes

▶ 16 bits architecture: 2
▶ 32 bits architecture: 4

▶ 64 bits architecture: 8

Binary numbers

▶ Each binary digit is bit: BInary digiT
▶ Eight bits is byte. In byte:

▶ 00000000 to 0 (zero)
▶ 11111111 to 255 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =

28 − 1
▶ Word (Computer jargon) is group of bytes

▶ 16 bits architecture: 2
▶ 32 bits architecture: 4
▶ 64 bits architecture: 8

Negative numbers?

1. In the decimal system: +3 or 3, and negative: −3

2. In binary system (theoretically): +00000011 or −00000011. . .
3. . . . but how to note signs + and −?
4. The easiest way is to use zero as plus 3 — 00000011
5. The easiest way is to use one as minus −3 — 10000011
6. How comfortable do integer calculations (positive and negative)?

Negative numbers?

1. In the decimal system: +3 or 3, and negative: −3
2. In binary system (theoretically): +00000011 or −00000011. . .

3. . . . but how to note signs + and −?
4. The easiest way is to use zero as plus 3 — 00000011
5. The easiest way is to use one as minus −3 — 10000011
6. How comfortable do integer calculations (positive and negative)?

Negative numbers?

1. In the decimal system: +3 or 3, and negative: −3
2. In binary system (theoretically): +00000011 or −00000011. . .
3. . . . but how to note signs + and −?

4. The easiest way is to use zero as plus 3 — 00000011
5. The easiest way is to use one as minus −3 — 10000011
6. How comfortable do integer calculations (positive and negative)?

Negative numbers?

1. In the decimal system: +3 or 3, and negative: −3
2. In binary system (theoretically): +00000011 or −00000011. . .
3. . . . but how to note signs + and −?
4. The easiest way is to use zero as plus 3 — 00000011

5. The easiest way is to use one as minus −3 — 10000011
6. How comfortable do integer calculations (positive and negative)?

Negative numbers?

1. In the decimal system: +3 or 3, and negative: −3
2. In binary system (theoretically): +00000011 or −00000011. . .
3. . . . but how to note signs + and −?
4. The easiest way is to use zero as plus 3 — 00000011
5. The easiest way is to use one as minus −3 — 10000011

6. How comfortable do integer calculations (positive and negative)?

Negative numbers?

1. In the decimal system: +3 or 3, and negative: −3
2. In binary system (theoretically): +00000011 or −00000011. . .
3. . . . but how to note signs + and −?
4. The easiest way is to use zero as plus 3 — 00000011
5. The easiest way is to use one as minus −3 — 10000011
6. How comfortable do integer calculations (positive and negative)?

Negative integers

“Subtraction Table:”
− 0 1
0 0 1
1 1 0

We will try it.
(Let assume that we use 4-bit numbers)

▶ 0011 − 1 = 0010
▶ 0010 − 1 = 0001
▶ 0001 − 1 = 0000
▶ 0000 − 1 = 1111

So −1 is 1111 (in 4-bit word). Isn’t it?

Negative integers

“Subtraction Table:”
− 0 1
0 0 1
1 1 0

We will try it.
(Let assume that we use 4-bit numbers)
▶ 0011 − 1 = 0010

▶ 0010 − 1 = 0001
▶ 0001 − 1 = 0000
▶ 0000 − 1 = 1111

So −1 is 1111 (in 4-bit word). Isn’t it?

Negative integers

“Subtraction Table:”
− 0 1
0 0 1
1 1 0

We will try it.
(Let assume that we use 4-bit numbers)
▶ 0011 − 1 = 0010
▶ 0010 − 1 = 0001

▶ 0001 − 1 = 0000
▶ 0000 − 1 = 1111

So −1 is 1111 (in 4-bit word). Isn’t it?

Negative integers

“Subtraction Table:”
− 0 1
0 0 1
1 1 0

We will try it.
(Let assume that we use 4-bit numbers)
▶ 0011 − 1 = 0010
▶ 0010 − 1 = 0001
▶ 0001 − 1 = 0000

▶ 0000 − 1 = 1111
So −1 is 1111 (in 4-bit word). Isn’t it?

Negative integers

“Subtraction Table:”
− 0 1
0 0 1
1 1 0

We will try it.
(Let assume that we use 4-bit numbers)
▶ 0011 − 1 = 0010
▶ 0010 − 1 = 0001
▶ 0001 − 1 = 0000
▶ 0000 − 1 = 1111

So −1 is 1111 (in 4-bit word). Isn’t it?

Negative integers

“Subtraction Table:”
− 0 1
0 0 1
1 1 0

We will try it.
(Let assume that we use 4-bit numbers)
▶ 0011 − 1 = 0010
▶ 0010 − 1 = 0001
▶ 0001 − 1 = 0000
▶ 0000 − 1 = 1111

So −1 is 1111 (in 4-bit word). Isn’t it?

Negative integers

“Subtraction Table:”
− 0 1
0 0 1
1 1 0

We will try it.
(Let assume that we use 4-bit numbers)
▶ 0011 − 1 = 0010
▶ 0010 − 1 = 0001
▶ 0001 − 1 = 0000
▶ 0000 − 1 = 1111

So −1 is 1111 (in 4-bit word). Isn’t it?

Negative integers

Let’s check (ance again only four bits):

5 + (−1)

0 1 0 1
1 1 1 1

1 0 1 0 0

How do you like this?
It is called “Two’s complement (code)”

Negative integers

Let’s check (ance again only four bits):

5 + (−1)

0 1 0 1
1 1 1 1

1 0 1 0 0

How do you like this?
It is called “Two’s complement (code)”

Negative integers

Let’s check (ance again only four bits):

5 + (−1)

0 1 0 1
1 1 1 1

1 0 1 0 0

How do you like this?

It is called “Two’s complement (code)”

Negative integers

Let’s check (ance again only four bits):

5 + (−1)

0 1 0 1
1 1 1 1

1 0 1 0 0

How do you like this?
It is called “Two’s complement (code)”

An excursus

Decimal numbers, only two digits:

3 3
9 9

1 3 2

An excursus

Decimal numbers, only two digits:

3 3
9 9

1 3 2

Negation

To get the two’s complement of a binary
number, the bits are inverted, or “flipped”,
by using the bitwise NOT operation; the
value of 1 is then added to the resulting
value, ignoring the overflow which occurs
when taking the two’s complement of 0.:

1 is 0001
inversion: 1110
adding 1: 1111
2 to 0010
inversion: 1101
adding 1: 1110
checking 5 + (−2)

0 1 0 1
1 1 1 0

1 0 0 1 1

Multiplication?
Exercise

Let’s assume that our computer is 5-bit (4 bits + sign?)

0 0 1 0 1
∗ 1 1 1 1 0

Homework!

Multiplication?
Exercise

Let’s assume that our computer is 5-bit (4 bits + sign?)

0 0 1 0 1
∗ 1 1 1 1 0

Homework!

Back

	Binary numeral system
	Conversions
	Processor
	Logical operations
	Relay
	Vacuum tubes (valves)
	Binary arithmetic operations
	XOR

	Binary numbers
	Negative numbers
	Negation
	Multiplication

