Application of waste hydrogen in energy production. Case study on base of the implementation of the method in selected chemical plant in Poland

Paweł Gąsior Jerzy Kaleta*

Trzebnica, 3–6 th September 2013

*Wrocław University of Technology, Institute of Materials Science and Applied Mechanics
Outline

- Hydrogen production and utilization levels in EU (including the surplus for energy production use)
- EU demonstrative projects in the use of H₂ for stationary applications (energy production)
- Preliminary estimation for Poland
- The use of by-hydrogen ("waste hydrogen") in the energy sector in chemical plants, selected examples

Hydrogen production sites

- Geographic distribution of identified industrial hydrogen production facilities.
- Main clusters: Benelux, Rhein-Main, Midlands and North Italy

Source:
- Roads2HyCom
Hydrogen production sites

- Total European production is estimated at about 90bn m3 (2003): 80bn m3 for European Union members (including 22bn m3 for Germany, 10bn m3 for the Netherlands, and approximately 5-7bn m3 for both the United Kingdom, France, Italy, Spain and Belgium), 2bn m3 for EFTA countries, and 10bn m3 for Candidate Countries (CC). Poland - 4.2 bn m3.

- Total hydrogen consumption in Western Europe is estimated to be about 61bn m3 (2003), 80% of which was consumed by mainly two industrial sectors: the refinery (50%) and the ammonia industry (32%), which are both captive users. If one adds hydrogen consumption by methanol and metal industries, those four sectors cover 90% of the total consumption.

- “Surplus hydrogen” in Europe: 2-10bn m3 hydrogen. It is possible to supply about 1-6 million vehicles (1.5-3% of all vehicles in the EU; estimated at 190m).

Source:
- Roads2HyCom

Demonstration hydrogen projects in EU

- Geographic distribution of identified hydrogen demonstration projects.

- Centres of aggregated activity are the German Rhein-Ruhr/Rhein-Main area and Denmark in connection with southern Sweden Clusters

Source:
- Roads2HyCom
Hydrogen production sites and demonstration project

- Often, but not necessarily always, the location of a production site coincides with the location of a demonstration project.

- Centres of aggregated activity are the German Rhein-Ruhr/Rhein-Main area and Denmark in connection with southern Sweden Clusters.

Source:
- Roads2HyCom

By-product hydrogen by chlor-alkali industry

- World production of chlor-alkali hydrogen: 16 billion m³/year
- Hydrogen vented by chlor-alkali industry: 2.4 billion m³/year
- Vented H₂ converted with fuel cell power: 420 MWe (assuming 50 % conversion efficiency)
- Advantages: Reduction of electricity consumption of chlor-alkali plant by 20% when all byproduct hydrogen is converted to power (conversion efficiency = 50%; PEM fuel cells)

Source:
- NedStack Fuel Cell Technology, Arnhem, Netherlands
- Akzo Nobel Base Chemicals, Amersfoort, Netherlands
By-product hydrogen in Europe

- "Surplus hydrogen" in Europe: 2-10bn m³ hydrogen. It is possible to supply about 1-6 million vehicles (1.5-3% of all vehicles in the EU; estimated at 190m - Roads2HyCom)
- Fifty* milion Nm³ is the amount of hydrogen by-product coming from European industries every day and not sold out to the gas or chemical industry (about: 15bn m³/y).
- This number represents an equivalent net production of 150 GWh/day (hydrogen energy content).

Source:
- *Hinicio report, 2011 (Supports the Valorisation of Hydrogen Industrial By-product)

Hydrogen production by regions, Poland

<table>
<thead>
<tr>
<th>Poland</th>
<th>Centralny</th>
<th>Mazowieckie</th>
<th>0.04</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Północno - Zachodni</td>
<td>Zachodniopomorskie</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Północny</td>
<td>Kujawsko-Pomorskie</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pomorskie</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Północny</td>
<td></td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>Południowo-Zachodni</td>
<td>Dolnośląskie</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opolskie</td>
<td>0.59</td>
</tr>
<tr>
<td>Total Południowo-Zachodni</td>
<td></td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>Południowy</td>
<td>Małopolskie</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Śląskie</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Południowy</td>
<td></td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Wschodni</td>
<td>Lubelskie</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Podkarpackie</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Wschodni</td>
<td></td>
<td></td>
<td>1.57</td>
</tr>
<tr>
<td>Total Poland</td>
<td></td>
<td></td>
<td>4.18</td>
</tr>
</tbody>
</table>

Source:
- HyWays
Hydrogen Fuel Cells and Electromobility in European Regions - HyER

32 regions in 14 EU countries
€ 82 mln annual budget for H2

Source:
• HyER

HyER - current Hot Spots

TODAY
- 75 hydrogen refueling stations
- 100 fuel cell vehicles

2020
- 1 000+ hydrogen refueling stations
- 500 000 fuel cell vehicles

Source:
• HyER
HyER - Connecting the dots..... along TEN-T corridors

Short term action:
1. Pilot linking existing H2 networks along key corridors
2. 2020 – 2030 Commercial roll-out

Source:
- HyER

The hydrogen power plant Fusina, Italy

Innovations:
- First combined cycle worldwide designed to operate with pure hydrogen.
- First low-NOx combustor for hydrogen (400 mg/Nm3 in experimental phase, 100 mg/Nm3 in commercial operations).
- Condensing HRSG (heat recovery steam generator) for the maximum energy recovery.

Source:
- http://de.amiando.com/eventResources/r/v/kfKocJZWUeX0h/Electricity_from_hydrogen_with_combined_cycles_-_The_Fusina_Project.pdf
The hydrogen power plant Fusina, Italy

- The Fusina power plant, featuring a gas turbine that can use hydrogen as its main fuel along with a condensing-type heat recovery steam generator.

The hydrogen plant

- Enel's Fusina plant (near Venice) is the world’s first industrial-scale hydrogen-fuelled power plant.
- Construction: about 50 million euros
- Capacity: 16 MW
- Efficiency: 41.8%
- Energy generated: 60 million Kwh per year
- Supply energy needs for 20,000 households
- CO2 emissions avoided: over 17,000 t per year

Source:

- http://www.powerengineeringint.com

The hydrogen power plant Fusina. Gas turbine

- The gas turbine was supplied by General Electric – Nuovo Pignone.
- The hydrogen fuelled combustor has been specifically developed for the Fusina plant with support of Enel.
- Combustor configuration is suitable for research activities (silos-type single-can combustion chamber, diffusive flame, steam injection for NOx abatement).

Source:

- http://de.amiando.com/eventResources/r/v/kfKncJZVUe3Xh/Electricity_from_hydrogen_with_combined_cycles_-_The_Fusina_Project.pdf
Implementation at Solvay Antwerp chlor-alkali plant

350,000 Tons / yr Chlorine
10,000 Tons / yr Hydrogen

Source:

Pilot PEM Power Plant at Delfzijl (50kW)

• complete system fits inside 20 ft sea container
• start of construction: June 2006
• first power to Delfzijl grid: 11 April 2007
• soda contamination: July-Aug 2007
• 6000 hrs, 300 MWh to grid: 10 July 2008

PEM - Proton exchange membrane fuel cells

Source:
• NedStack Fuel Cell Technology, Arnhem, Netherlands
• Akzo Nobel Base Chemicals, Amersfoort, Netherlands
Implementation at Solvay Antwerp chlor-alkali plant. Schematic drawings (1 MW, 2011)

1 MW installation fits inside 40 ft. sea container

Source:

Ballard Power Plant (by-product hydrogen; 1MW)

- Canadian companies Ballard Power Systems and K2 Pure Solutions have finalized a sales agreement to deploy a PEM fuel cell power generator to be sited at a K2 Pure Solutions’ bleach plant in Pittsburg, California
- Power to 1 megawatt
- It’s the size of a tractor trailer, it’s on wheels and completely transportable
- Start of full exploitation: mid 2012

Source:
Wastewater-Hydrogen Fuel Plant

- Air Products opened its latest hydrogen fueling station in Orange County California (August, 2011). The hydrogen is produced from methane gas emitted from wastewater in holding tanks in Fountain Valley.
- The plant is equipped with a fuel cell that reforms the methane into hydrogen, which is used to generate 250 kilowatts of electricity.
- The technology used in plant can be applied to other biogas including agricultural, food and brewery waste streams, as well as landfill gas. Converting all these into hydrogen could supply enough fuel for 200 million fuel cell vehicles in the US.

Source:

By-product hydrogen

- In Shanghai there are two central hydrogen plants (Air Liquid, Linde), but many industries produce yearly about 550,000 tons of hydrogen from:
 - coal gasification
 - methanol
 - ammonia
 - acetic acid
 - coking oven gas (COG)
 - chlor-alkali
 - electrolysis
 - etc.

Source:
- Ma Jianxin, Clean Energy Automotive Engineering Center Tongji University, Hyforum 2008 August 5, 2008, Changsha, China
Waste-Hydrogen power plant in Poland - pilot project

- Main features of new H₂ power plant:
 - Total electrical power: 1 MW (max 5 MW)
 - Power generators: 2 x 400 kW + 1 x 200 kW
 - Gas source: 4 different lines (octan and butyl alcohols, propylene purge gas, coke-oven gas)
 - Fuel cells unit: 20 kW (pure H₂)
 - SHM system for on-line pipeline monitoring (leakage detection)
 - Pilot installation for power generation and methodology testing

Leakage detection on hydrogen pipelines

Leakage detection by optical fiber based Structural Health Monitoring system (so called distributed sensors with temperature measurements by Raman effect)
Conclusions

- Any unused hydrogen, which is the result of technological processes in the chemical industry (or from biomethane gas), can be used to generate electricity and heat.
- There are known and controlled technologies (know-how) for energy production (electricity and heat) from hydrogen. Generators are powered by internal combustion engines, gas turbines, and/or fuel cells.
- Recently, the leading chemical companies in Europe and Canada / USA, launched stationary systems for energy production (uses “waste” hydrogen) with a capacity measured in MWs.
- First pilot project in Poland is currently implemented.