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  Overview 
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• Present state of probabilistic methods 

• Fracture mechanics concepts 

• Failure assessment diagram (FAD) 

• Concept of probabilistic assessment 

• Types and distributions of input parameters 

• Data fit and its verification 

• Statistical description of da/dN-curves 

• Statistical description of C and m 

• Ex.1: Probabilistic lifetime assessment of plate with central crack 

• Ex.2: Probabilistic assessment of lifetime of railway axle 

• Probabilistic assessment of cracked structures limit state 

• Ex. 3: Limit state of reactor vessel model 

• Conclusions 
 

Present state of probabilistic methods 

• Emergence of probabilistic and reliability analysis in the 

middle of 20th  century  

• Probabilistic methods at that time, no certainly unified 

methods, often very simplified 

• Quasi-probabilistic approaches for engineer applications 

(partial safety factors) 

• Probabilistic fracture methods as an add-on for  deterministic 

approaches in different standards: BS7910, R6, SINTAP, 

FITNET, FM-codes 

• FM-software: ProSINTAP, ProSACC, EIFSIM, … 
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  Fracture mechanics concepts 

4 

Common applications and methods of structural elements 

assessment with cracks under static, cyclic and dynamic 

loading 

•Input values: geometry, loading, material state 

•Static loading: FAD concept 

•Cyclic loading: crack growth calculations 

•Limit state: critical loading and maximal failure size 

from FAD, accepted crack size  
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FAD concept 
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Crack growth calculations 
6 
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Concept of probabilistic assessment 

•Statistical description of data scatter (geometry, loading, and 

material state) 

•Implementation of probabilistic fracture mechanics 

calculations with appropriate methods: Monte-Carlo 

simulations (MCS), MCS-IS, FORM, SORM 

•Quantitative description of results: probability of failure, 

variability of life, initial crack size, etc. 
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Types and distributions of input parameters 
8 
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Data fit and its verification 

 Methods: 

• Regression analysis 

• Method of moments 

• Maximal likelihood estimation 

Criteria and their verification: 

• Estimation of failure 

• Hypothesis, afterwards GOF-Tests  

 (Anderson-Darling, Kolmogorov-

Smirnov, c2) 
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RMS error 

X: 0.0047523 

Y: 0.021266 

AD GoF test accepted 

Significance level: 0.1 

AD statistical: 0.2438 

AD critical: 0.637 

c.o.v.: 0.32142 

median: -9.56156 
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Statistical description of da/dN-curves 

FCG diagrams of steel (0, 45% С) for R=0 and R=-1  
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Consideration and description of 

scatter of 

• Paris constants, C and m 

• Threshold value, DKth 

• Fracture toughness, Kc 

4 5 6 7 8 9 10 20 30 40 50 
1E-8 

1E-7 

1E-6 

1E-5 

1E-4 

1E-3 

0.01 

0.1 

  

  

d
a/

d
N

, 
m

m
/c

yc
le

 

 R=0 
 R=-1 

DK,MPa√m 

11 

Statistical description of C and m 

• C and m are often observed as 

dependent parameters 

• Thus one of this parameters was fixed 

and another was varied 

• m was estimated from the fit with least-

squares method 

• C  was treated as a random variable 

obtained from many statistical 

experiments 

m 

5,55 
5,02 
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Statistical description of C and m 
12 
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Railway axle with surface defect 
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Fig. 1. Dimensions of axle fillet 

 

Fig. 2. Cylinder with semi-elliptical 

surface crack 

Semi-elliptical crack with semi-axis ratio of a/c = 0.4 was considered 
(Fig. 2). Crack depth a was chosen equal to 0.5 mm, 1.0 mm, 3.0 mm, 
8.0 mm, 16.0 mm and 32.0 mm. Axle diameter D in the place of crack was 
129.5 mm. 

The SSS and SIF of railway axle in highest stresses local field were 
assessed, where the cracks initiate most often - the place of transition from 
cylindrical part of axle with diameter 130 mm to the fillet with R = 25 and 35 
mm (Fig.1).  
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Finite element modelling of railway axle 
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Fig. 1. FEM of axle 

  
  

  

Three-dimensional finite element SOLID95 was chosen for the model. This 

element contains 20 nodes (including intermediate). The ordered mapped 

meshing of finite elements was used for modelling and assessment of stress-

strain state in the tip of semi-elliptical crack. The loading on axle-box P = 
260 kN.  

Fig. 2. Meshing fragment  

Finite element analysis of railway axle 

 

15 

Fig. 1. Stress distribution and detail of the mesh for a crack with 

a = 16.0 mm and a/c = 0.4. 
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Stress intensity factors of railway axle 
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Fig. 1. Stress distribution on the 

surface of fillet. 
Fig. 2.  The distribution of normal stresses 

along the fillet surface of axle without crack 

under loading on journal box P = 260 kN 
 

 / bY K a  

where b – normal stress. 
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Stress intensity factors of railway axle 
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Fig. 1. Dependence of YА on a/D:  

FEM (1); FEM approximation (2) 

Fig. 2. Dependence of YС on a/D:  

FEM (1); FEM approximation (2)   
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Example 1: Probabilistic assessment of lifetime 

of plate with central crack 

Steel 0.45% C. Plate with central crack. t = 5 mm, 
W=23,5 mm, a0=5,1 mm. Paris equation, m = 5.06  

 

18 

Fig. 1. Crack length a vs. N, a0=5,1 mm Fig. 2. Block loading [Zerbst, 2005] 

Probabilistic assessment of lifetime of plate with 

central crack 
19 

Fig. 1.   P. d. f. of final crack length Fig. 2.   C. d. f. of final crack length 
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Example 2: Probabilistic assessment of lifetime 

of railway axle 

 

20 

Fig. 1. P. d. f. of final crack depth af, 
a0=5 mm 

Fig. 2. C. d. f. of final crack depth af, 
a0=5 mm 

Probabilistic assessment of lifetime  

of railway axle 
21 

Fig. 1. P. d. f. of final crack depth af, 
a0=10 mm 

Fig. 2. C. d. f. of final crack depth af, 
a0=10 mm 
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Probabilistic assessment of the limit state of 

structures with the cracks 
22 

The failure probability is multidimensional definite integral 

( ) 0

( )
f X

g

P f dx



x

x .    (1) 

Two different limit state functions g (x) are used  
 
 
 

where 
U 
= 

B 
 — ultimate tensile strength; a — crack size; 

L
r
 — ratio of the applied stress to yield stress of the material 

of the structure with the crack. Limit state functions are 
based on the standardized procedure SINTAP. 
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  Example 3: Limit state of reactor vessel model 
23 

The probability of failure assessment of reactor 

vessel model after WPS on the basis of FAD 

taking into account the statistical distributions 

• depth of the crack a,  

• internal pressure p,  

• yield strength σ0.2,  

• ultimate tensile strength σU  

• fracture toughness of the material KIc for the 

case of loading-cycle with total unloading of 

the specimen. 
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The model of pressure vessel with a crack on the 

inner wall 
24 

Geometry  

2R0 h a a/b 

mm  

4130 140 
16-30, 
step  2 

2/3 

 

0.2, МPа  B, МPа  , %  , %  

1100 1160 16.6 67.2 

 
 

Mechanical properties of 15Cr2MoV (III) steel at 293 К 
 

Stress intensity factor (SIF) and limit load (PL) 
25 
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[Helliot J., 1979] 

[Laham S., 1998] 
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Probability density functions 
26 

Input data Distribution type Parameters of distribution 

p, МPа normal p=32.5; p =3.25; 4.875; 6.5 

0,2, МPа lognormal x0=1080, m=20, =0.4 

B, МPа lognormal x0=1140, m=8, =0.6 

Kmat, МPаm Weibull x0 = 141,  = 14.39,  = 2.04 

 

FAD of pressure vessel model under alternating 

pressure for different crack depth (28, 30, 32 mm) 
27 

(1) a=28 mm; (2) a=30 mm; (3) a=32 mm 

a, mm Pf 

28 2·10-4 

30 3.2·10-3 

32 1.35·10-2 

Number of simulations  

N = 104 

Normal distribution of p:  

p = 32.5 MPa,  

covp = 0.05. 
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Dependence of failure probability Pf  on a crack depth by 
alternating pressure, calculated by MCIS 

28 

covp=0.1 (1); 0.15 (2); 0.2(3) 

Dependence of failure probability Pf  on a crack depth by 
alternating pressure, calculated by FORM 

29 

covp=0.1 (1); 0.15 (2); 0.2(3) 



16 13th Summer School on Fracture Mechanics

CONCLUSIONS  
30 

 The c.d.f of cyclic crack resistance characteristics (parameter 
lgC of Paris law) of 0.45% C steel were constructed and 
tested by Anderson-Darling GOF. 

 The probabilistic analysis of lifetime of commuter train axle 
with the surface semi-elliptical crack was performed.  

 The distribution functions for final crack depth in axle after 106 
cycles of block loading were obtained depending on initial 
defect size.  

 The dependencies of reactor model failure probability  on the 
crack depth a were obtained by method of MCIS and FORM.  

 The FAD with Monte Carlo method for different crack depth 
were constructed, considering the pressure as normally 
distributed random variable.     

 


